
Java COM

RETAILERS PLEASE DISPLAY
UNTIL NOVEMBER 30, 2001

September 2001 Volume:6 Issue:9

The World’s Leading Java Resource

TM

Journeyman J2EE: Making the Move to J2EE Charles Arehart
A foray into the vast world of J2EE application development 22

Feature: Java Rules in J2EE Steve Ross-Talbot
From niche solution to prime time 26

Reusable Designs: Design Patterns to Vijay S. Ramachandran

Optimize Performance Stop reinventing the wheel 44

User Interfaces: A Reusable Drag and Thomas Hammell

Drop Handler Simplifying the implementation of the drag and drop 60

Feature:What Is Java Reflection? José María Barrera
The spirit and technical side of this advanced Java feature 66

Feature: JVMs for Embedded Glenn Coates

Environments What are the options? 98

Game Design: Freedom Through Constraints Tom Sloper
Designing games for constrained platforms 106

MIDlets:Writing Apps for the MID Profile Jason Briggs
J2ME and the enterprise: the big picture PART 3 110

Java Basics: Extreme Performance Tuning James McGovern
Make your Web-based application faster and more scalable 118

Guest Editorials
by Glen Martin pg. 7

by Chris Melissinos pg. 76

Platform Update
by Jason Westra pg. 18

Book Review
JSP Tag Libraries pg. 20

Tips & Techniques
by Mark Dykstra pg. 36

Service Review
mycgiserver pg. 42

Product Reviews
Forte for Java 3.0 pg. 56

Jtest 4.0 pg. 64

Embedded Computing
by Vincent Perrier pg. 92

Cubist Threads
by Blair Wyman pg. 130

AUTHOR BIO
Alan Williamson is editor-in-chief of Java Developer’s Journal. In his spare time he holds the post of chief technical officer at n-ary
(consulting) Ltd (www.n-ary.com), one of the first companies in the UK to specialize in Java at the server side.
Rumor has it he welcomes all suggestions and comments.

5SEPTEMBER 2001

F R O M T H E E D I T O RD IFF

Together We Stand, Divided We Fall

alan@sys-con.com

This is the time of year when most
people take their vacation…when
productivity falls a little below the

yearly average…when nothing exciting hap-
pens. Mainstream journalists call it the “silly
season”…the time when they usually have to
dredge up all those human interest stories
about terribly dull people doing extraordi-
nary things.

Our news world also suffers a little from
this vacation syndrome, with no earth-shat-
tering stories to keep ahead of. This year has-
n’t been so bad, however – thanks largely to
Microsoft and the whole debacle surround-
ing Java and Windows XP. As my esteemed
colleague Jason Briggs writes in his editorial,
we’ve had a lot of fun reading what can only
be described as propaganda surrounding the
so-called demise of Java and how the world
is now going to move toward C# as an alter-
native.

What a lot of nonsense! Don’t panic. Java
is safe and will continue to be a major force
in software development. Incidentally, for a
wee bit of fun, check out our back-page car-
toon. Our editors do have a wicked sense of
humor.

As you know, I’m based in Scotland and
travel to New York regularly. Each time – con-
servative spender that I am – I look for the
cheapest flight. Nine times out of 10 this is
Icelandic Air, and Reykjavik airport is such a
wonderful place to stop over in, breaking up
the journey nicely (stick with me – my story
gets better).

What I like most about using Icelandic Air
is that their whole Web site is based on Java,
and it gives me a warm feeling to be actively
using the technology that we spend the
majority of our time talking and writing
about. Admittedly they’re using JSP, which
makes me cringe, but hey, you can’t have
everything.

Of late, however, the team up in Reykjavik
has been having problems keeping the site

up. In fact, as I write this editorial, the site is
unable to accept bookings and I’ve had to
resort to flying with Mr. Branson at Virgin.
I’ve been in constant dialog with the team at
Icelandic Air, probing to see what’s going
wrong, because as much as I hate JSP, I hate
seeing such a high-profile site that’s using
Java not be available. It does nothing for
Java’s reputation as a whole, and it’s impor-
tant we don’t give Mr. Gates any more excus-
es than he already has for criticizing Java’s
performance.

Icelandic Air is using a number of high-
profile products to host their JSP offering –
their names will remain anonymous. The
problem was sourced to a start-up script that
failed to load one of the servers in their serv-
er farm, rendering the whole farm useless.
Fortunately, this has been fixed (so the prob-
lems I’m seeing now must be new ones!).

• • •
I’ve been fortunate to meet and know

many powerful women in the world of com-
puting. On the whole, getting where they are
hasn’t been easy. They’ve generally had to
work twice as hard as their male counter-
parts to prove themselves. We all know it
shouldn’t be this way, but that’s the harsh
reality of the corporate (man’s?) world. In
much the same way, I can’t help but draw a
parallel with Java proving itself in the corpo-
rate world against all the alternatives.

When problems do occur, I’ve seen upper
management quick to fault the language and
lay the blame at Java’s doorstep, muttering
that “we should have gone with such-and-
such.” Because of its high-profile marketing,
Java is an easy target. And thanks to the days
of the “gray-box-in-a-browser,” when a site is
running slow, the reason given is often Java.

We all know this is a lot of nonsense and
usually just masks the real reason something
is going wrong, which in the majority of

ALAN WILLIAMSON EDITOR-IN-CHIEF

J2SE
H

om
e

J2E
E

J2M
EI N T E R N A T I O N A L A D V I S O R Y B O A R D

• CALVIN AUSTIN (Lead Software Engineer, J2SE Linux Project, Sun Microsystems),
• JAMES DUNCAN DAVIDSON (JavaServlet API/XMP API, Sun Microsystems),

• JASON HUNTER (Senior Technologist, CollabNet), • JON S. STEVENS (Apache Software
Foundation), • RICK ROSS (President, JavaLobby), • BILLROTH (Group Product
Manager, Sun Microsystems), • BILL WILLETT (CEO, Programmer’s Paradise)

• BLAIR WYMAN (Chief Software Architect IBM Rochester)

E D I T O R I A L
EDITOR-IN-CHIEF: ALAN WILLIAMSON

EDITORIAL DIRECTOR: JEREMY GEELAN
ASSOCIATE ART DIRECTOR: LOUIS F. CUFFARI

J2EE EDITOR: AJIT SAGAR
J2ME EDITOR: JASON BRIGGS

PRODUCT REVIEW EDITOR: JIM MILBERY
FOUNDING EDITOR: SEAN RHODY

P R O D U C T I O N
VICE PRESIDENT, PRODUCTION AND DESIGN: JIM MORGAN

EXECUTIVE EDITOR: M’LOU PINKHAM
MANAGING EDITOR: CHERYL VAN SISE

EDITOR: NANCY VALENTINE
ASSOCIATE EDITORS: JAMIE MATUSOW

GAIL SCHULTZ
BRENDA GREENE

ASSISTANT EDITOR: LIN GOETZ
TECHNICAL EDITOR: BAHADIR KARUV, PH.D.

W R I T E R S I N T H I S I S S U E
CHARLES AREHART, JOSÉ MARIA BARRERA, JASON BELL, ZEV BLUT,
JASON BRIGGS, GLENN COATES, MARK DYKSTRA, THOMAS HAMMELL,
GLEN MARTIN, JAMES MCGOVERN, CHRIS MELISSINOS, JIM MILBERY,

VINCENT PERRIER, VIJAY RAMACHANDRAN, STEVE ROSS-TALBOT, AJIT SAGAR,
TOM SLOPER, JASON WESTRA, ALAN WILLIAMSON, BLAIR WYMAN

S U B S C R I P T I O N S :
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: SUBSCRIBE@SYS-CON.COM
COVER PRICE: $5.99/ISSUE

DOMESTIC: $49.99/YR. (12 ISSUES)
CANADA/MEXICO: $79.99/YR. OVERSEAS: $99.99/YR.

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $10/EA., INTERNATIONAL $15/EA.

E D I T O R I A L O F F I C E S :
SYS-CON MEDIA 135 CHESTNUT RIDGE RD., MONTVALE, NJ 07645

TELEPHONE: 201 802-3000 FAX: 201 782-9600
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is published monthly

(12 times a year) for $49.99 by SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645. Periodicals postage rates are paid at

Montvale, NJ 07645 and additional mailing offices. POSTMASTER: Send address
changes to: JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

135 Chestnut Ridge Road, Montvale, NJ 07645.

© C O P Y R I G H T :
Copyright © 2001 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and

retrieval system, without written permission. For promotional reprints, contact reprint coor-
dinator. SYS-CON Publications, Inc., reserves the right to revise, republish and authorize its

readers to use the articles submitted for publication.

W O R L D W I D E D I S T R I B U T I O N B Y :

CURTIS CIRCULATION COMPANY
NEW MILFORD, NJ

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

Java COM

–continued on page 78

7SEPTEMBER 2001

Java COM

WRITTEN BY GLEN MARTIN

Gone Fishing

AUTHOR BIO
Glen Martin is the J2EE Specifications marketing manager at Sun Microsystems, and is responsible for specifying and advocating the future of

enterprise Java. He has 14 years of industry experience building everything from packet switches to development tools.

glen.martin@sun.com

G U E S T E D I T O R I A L

No Magic. . .
Just Technology That Works

M ▲
G

I
C

✦ ✦ ✦

The rational
alternative

Download fully functional demo at:

www.magicdraw.com
contact us at

contacts@magicdraw.com

100% Pure Java Application

Version 4.5

Introductory Offer
$2995
for Teamwork Server

All 9 UML diagrams
Additional Features:
• Performs Java, C++ or CORBA IDL

code round-trip engineering (code
generation and reverse engineering);
recognizes JavaDoc comments. This
feature allows you to write code, reverse
engineer, make changes to the model
and re-generate the code without losing
any implementation specific information.

• Supports UML 1.3 notation.
• Saves diagrams as bitmap PNG/JPG and

scalable WMF/SVG/EPS/DXF formats.
• Provides XML interoperability — native

model files are stored in XMI format.
• Integrated with Forte for Java (FFJ) IDE

versions 1.0 and 2.0.

Standard Edition: $249
Professional Edition: $499

Visit us at Java One

Floating License . . $100 additional

Upgrade for a $69 annual fee!

Isaw a television ad the other day that
portrayed someone using a cellular
phone as a fancy cash card to make a

vending machine purchase. As a person who hates
to carry loose change – once you start, you sud-
denly realize you have a pocketful – this spoke to
the kind of useful integration into people’s lives
that a new technology needs to be successful.

If you think a cash card is easier to carry than a
cellular phone...you’re right. But the integration of
functions into one device is more convenient still.

A cell phone is one device that could act as a cash
card, map, traffic-status monitor, voice recorder, and
yes, a competitive deep-sea fishing game.

That last one isn’t a joke, by the way. I hear it’s
the most popular downloadable content in Japan.
Apparently the phone vibrates with the tension on
the line.

Everyone agrees the wireless industry is poised
for incredible growth over the next couple of years.

More interesting is that by 2006 wireless may
well supplant wireline as the dominant means to
access services. This means there will be an
increasing number of users who <i>only</i> have
wireless access. And that access will be fast – even
2.5G has a bandwidth comparable to the DSL lines
many of us use today.

An examination of the wireless applications
being developed shows the network and back end
as critical elements of the overall solution. E-mail,
consumer e-commerce, and location-based serv-
ices are a few examples.

Even a deep-sea fishing game needs to synchro-
nize scores, and perhaps simulate the fishing lines
getting tangled when 20 suits on the same Tokyo
street corner hook a marlin at the same time.

This begs the question: “What infrastructural
capabilities are required for the server-side of
wireless applications?”

Scalability is clearly most important. Many
people will be using handhelds to access a wide
variety of services.

But there are less obvious requirements.
Many of these applications aren’t <i>pure wire-

less</i> – they need to access back-end applica-
tions and data. So effective integration with back
ends using a standards-base architecture is criti-
cal to the success of the wireless application.

Effective in this
case means both

capable and easy to
program, because faster time-

to-market for both new applications and upgrades
will be important to profits.

These back-end applications don’t all run on
one platform. Consumer e-commerce applica-
tions will need to be integrated with billing and
shipping systems, some of which have been
around for many years, and deployed on a wide
variety of hardware.

Another reality is that consumers will access
the same services with a multitude of devices,
from palmtops to phones and even the desktop. A
large online book retailer lets me browse and buy
books from my desktop and palmtop – hopefully
using the same application code.

Finally, these applications will see rapid
upgrades. We’re entering a world of mix-and-match
services in which new applications will be aggre-
gated out of existing services as quickly as people
can imagine it. Sometimes these applications will
be transactional, as in e-commerce. This leads to
the requirement for a flexible component reuse
platform that allows <i>just right</i> integration.

We’re looking for a highly scalable platform
with great support for back-end integration,
device- and platform-independence, and flexible
component reuse that supports transactions.

This is where the J2EE fits in. The Java technolo-
gy community has been solving these problems for
years now, and J2EE version 1.3, released in
September 2001, has the solutions in a 3G platform.

In particular, the J2EE Connector Architecture
provides frequently demanded standardization to
the integration of back-end systems into new appli-
cations. This is what will eventually make these new
wireless applications useful, and foster the adop-
tion of the next wave of wireless applications.

The J2EE Client Provisioning Specification,
currently in process, will go one step further to
manage and deploy the different client-side parts
of applications that serve multiple devices.

Even better, J2EE eliminates vendor lock
through strong third-party vendor support.

Check it out.
Gotta run, I’ve got a fish on my phone.

8 SEPTEMBER 2001

Java COM

L E T T E R S T O T H E E D I T O R
J2

SE
H

om
e

J2
E

E
J2

M
E

Comments on Jon Stevens Article

Ienjoyed Jon Stevens article [“JSP, You Make
the Decision,” Vol. 6, issue 7].

I’m frustrated by all the limitations out-
lined in the article. I am interested in the
Velocity template solution; where can I find
more information on the Velocity/Turbine
project? I’m tired of “fighting” with JSP and
all its marketing hype; it’s not really a good
MVC solution for complex Web applica-
tions!

Mark A. Sellers
Mark.A.Sellers@wcom.com

P.S. The above is my opinion so don’t blame
WorldCom!

Ihated the article from Jon Stevens on JSP
alternatives [Vol. 6, issue 7].

He did not discuss Velocity or its intended
purpose, but jumped into picking apart JSP
against Velocity. He focused solely on the
benefits of Velocity, and then hoped we
enjoyed his tour of “alternatives.” I felt like I
was reading one giant anti-JSP gripe-fest.

His examples of JSP code are contrived, pur-
posely written poorly to make JSP look weak.

Having worked in ASP, Perl, ColdFusion,
and JSP, I can say that JSP cuts my coding
time by more than half, through the use of
tag libraries, etc.

My biggest beefs are:
1. Jon talks about the transform->compile

process in JSP, saying that it has to recom-
pile the JSP each time a request is made,
which is blatantly untrue on many plat-
forms. Maybe when Jon was still coding
JSP in 1998 that was true.

2. Jon also says that JSP breaks the vaunted
MVC design and you have to embed HTML
in the code, but then goes on to show us
Listing 7 in Velocity, which clearly has
HTML embedded in the middle of his
code. What’s with the double standard?

3. Jon speaks about how HTML programmers
won’t understand notions of scope, or grasp
complex programming issues. True, most
HTML designers don’t know about coding
more complex applications. So don’t let
them do it! Many shops I’ve worked with

complete the design and HTML framework,
the basic templates of the site, and then the
back-end programmers complete the
inclusion of the page logic.

Next time if you’re going to talk about
alternatives to JSP and discuss the problems
in JSP, include Cocoon, Velocity, and other
Java solutions, and get someone with a more
open mind to evaluate them.

Maurice Reeves
Maurice@pipelineInteractive.com

Ijust read Jon Stevens article about JSP,
Struts, Velocity, etc. I was really pleased

that I’m not the only one that doesn’t like
JSPs that much. Great article!

Couldn’t have said it better... :-)

Andreas Prohaska
ap@apeiron.de

The article by Jon Stevens on JSP was the
most unbelieveable and unadulterated

rubbish that I have ever read! (perhaps
excluding Microsoft press releases). Not only
were his arguments vacuous and just plain
wrong, he showed he had absolutely no
understanding of the issues surrounding the
two concepts (push versus pull) whatsoever.
I am very, very disappointed in this article.

Richard Vowles
rvowles@borland.com

I am interested in what exactly you think is
unbelievable about what I wrote. I attempted to
stay very technical and detailed and the points
against JSP are actually valid points. What
parts of my statements did you find vacuous?

I’m also interested in what part of the Pull
versus Push model you think I don’t under-
stand. I wrote a document that has been
available on the Jakarta Turbine Web site
(http://jakarta.apache.org/turbine/pullmod-
el.html) for over seven months now that clear-
ly shows my understanding of the Pull model.
If there’s something inaccurate about what I
said, I would appreciate you clueing me into
what is wrong so that I can correct it.

Last, I would appreciate it if you would
take a few minutes and evaluate Velocity. The
reason is, I understand that it’s difficult to
have someone stand up and point out faults
in a technology that corporate marketing is
telling everyone they should be using.
However, I believe it’s always good to keep an
open mind, an open view, and a lookout for
other technologies that may actually do a bet-
ter job than the ones pushed on us.

Jon Stevens • jon@latchkcy.com

EJB-Based Services

Build to Spec” by Liz Blair is a wonderful arti-
cle [JDJ, Vol. 6, issue 7]. It provided excellent

insight into differentiating between and archi-
tecting with the many components of J2EE.

Vince Huston
vince.huston@valtech.com

Need an Investor?

Ienjoyed Jason Briggs’s article, “A Beginner's
Guide to Writing Applications for the MID

Profile” [Vol. 6, issue 7]. I would like to know if
you’re planning on having a second, third, or
nth part to the above article with more practi-
cal and realistic examples? If the answer is no,
could you recommend a book on this subject?

And good luck on your new Java-enabled
device to take over the new generation. Let
me know if you need an investor.

Mehrdad Shabestari
Mehrdad.Shabestari@htsco.com

“

Java COM

10 SEPTEMBER 2001

L E T T E R S T O T H E E D I T O R
J2

SE
H

om
e

J2
E

E
J2

M
E

JavaOne Show Review

A jit Sagar’s article was very well balanced
and nicely done. I attended both 2000

and 2001 and had the exact same impres-
sions. His review was in sharp contrast to
that of a competing Java periodical, which
was so rosy as to make me wonder whether
they had been at the same conference at all.

Mike Silverstein
msilverstein@silvermark.com

Thanks, Mike. The effects of the economy
were fairly obvious. Besides the attendees, I
also chatted with the folks at my hotel and a
couple of cab drivers. They are the best sources
for sensing the pulse of such events. I’m also
glad to hear that JDJ was able to cover the
event to the satisfaction of readers like you.
Letters such as yours make it all worthwhile.

Ajit Sagar • ajit@sys-con.com

Insignia on Jeode

The review of the Jeode platform [JDJ,
Vol. 6, issue 8] is welcome exposure for

Insignia Solutions, but the context in which
our product was evaluated doesn’t give your
readers a representative picture of the prod-
uct’s true performance attributes. While pit-
ting the Jeode Embedded Virtual Machine
(EVM) against four JVMs employing Just-in-
Time (JIT) compilers in a memory-rich NT
desktop environment makes for an interest-
ing race, it doesn’t reflect the real choices
developers have when deploying a JVM in a
memory-constrained device.

Jeode technology works well on NT but is
not intended for the desktop environment.
However, in constrained environments, the

dynamic adaptive compilation (DAC)
approach that the EVM employs has proven
to be much more effective than interpreter-
only or JIT compilation approaches.

In benchmark tests where memory
resources are freely available – like those
conducted by JDJ – JIT-based JVMs will shine
because they can fully compile a small appli-
cation at start-up so that the whole applica-
tion runs as native code. But this is not repre-
sentative of real applications, which are
much bigger and dynamic. So while JIT-
based solutions can deliver fast performance
for some small applications, particularly
benchmarks, they do not scale to larger, real-
world applications on resource-constrained
devices.

DAC technology delivers the best possible
performance in memory-constrained
devices, because it compiles the most fre-
quently executed code without incurring the
overhead penalties associated with compil-
ing infrequently executed code. It’s competi-
tive with desktop JVMs employing JIT com-
pilers in a NT environment, but its perform-
ance attributes are best observed in the
native resource–constrained environment
for which it was designed.

Gary M. Katz,APR
Senior Manager, Corporate Communications
Insignia Solutions
gary.katz@insignia.com

While I might agree with Insignia’s argu-
ments regarding comparisons between DAC
and JIT technologies, I stand by the review.
Jeode was also tested on a Compaq iPAQ (as
part of the iPAQ review) – exactly the type of
resource-constrained environment mentioned
– so it was an interesting comparison to look at
its performance against JVMs in a completely
open environment (memory-wise, that is). I
think the fact that Jeode held its own against
the “big-boys,” in an environment it is not suit-
ed for can only be seen as a selling point.

Jason Briggs • jasonbriggs@sys-con.com

Helen Thomas’s Article

Iread Helen Thomas’s article “Accelerating
Java Web Application Environments” [Vol.

6. issue 7] and wanted to tell you how I
enjoyed it. Although her article focused on
wired dynamic Web sites as apposed to the
wireless Internet, I’m very interested to see
how these spaces evolve together as Internet
standards continue to develop and true 3G
technologies catch up with developer’s appli-
cations.

Kirsten Brundahl
kbrundahl@bockpr.com

New Look

he new look of JDJ doesn’t work.
1. Many articles no longer include listings,

which makes reading the articles impossi-
ble unless [you are] seated next to a moni-
tor.

2. The new tendency to print text in
“artistic” colors like lavender, olive, and
pale gray results in text that’s nearly
illegible.

My favorite monthly magazine has
“evolved” into a chore to read. Please stick to
high-contrast color schemes.

Alan Wolfson
alan@dotobject.com

Thank you for that and I will pass on your
comments to the production department. But
you mention nothing of the quality of content,
which has gone up. How has that fared with
you?

Alan Williamson • alan@sys-con.com

But I Love the Content

Iwas trying to keep my note short and
sweet. I love the content, and recognize

the changes in having essentially three sep-
arate magazines between the covers.
There’s no question about it being at the
top of my “to read” pile, and I get one of
everything, including JOOP and the lesser-
known mags.

You used to do a fantastic job of printing
edited listings that illustrated the article. It
used to be a joy to read the only magazine
that printed enough code to support the con-
text of the articles.

I do like the color schemes for various
articles. Just use high-contrast combinations
for the text/code.

Alan Wolfson
alan@dotobject.com

The views and opinions are those of the read-
ers and do not necessarily represent the views
and opinions of their employers.

T

12 SEPTEMBER 2001

AUTHOR BIO
Ajit Sagar is the J2EE editor of JDJ and the founding editor and editor-in-chief of XML-Journal. A senior solutions architect with VerticalNet

Solutions, based in San Francisco, he’s well versed in Java,Web, and XML technologies.

ajit@sys-con.com

Thinking Outside the Box ...
They say no man is an island. For

J2EE I would say no platform is the
universe. Sometimes folks misun-

derstand the promise of J2EE. It won’t
replace every other development para-
digm. J2EE application servers won’t make
all other deployment and runtime envi-
ronments obsolete. And Java won’t be the
only language people program in. Java’s
strength is facilitating development, but it
isn’t the first and last thing of the program-
ming world. You can use J2EE to build
enterprise applications, but you can’t use
it to build the enterprise itself.

The distinction is important. When you
write enterprise applications, you model a
portion of the enterprise. You basically
take your organization/division/group’s
core technology offering, identify the sec-
tion of an enterprise’s business process
that you choose to model, and then go
about building the application.

If J2EE is your platform of choice, and I
hope it is, you build the business compo-
nents and the application logic using a
J2EE application server and J2EE APIs.
However, this application provides a piece
of the bigger puzzle. The rest of the appli-
cation environments you connect to may
use J2EE too, or a portion of it, or be total-
ly independent of J2EE.

So how do you connect to non-J2EE
environments? Well, depending on the
boundaries of the “J2EE box” you’ve iden-
tified, you define the integration points.
You then use a combination of the facili-
ties offered by the J2EE platform and other
cross-platform technologies to talk to the
outside world.

At the front end these technologies
could include servlets and XML. These
APIs allow you to present to the client in a
platform-neutral way. At the back end
J2EE offers connectivity to third-party sys-
tems through various technologies. J2EE
provides connectivity to enterprise infor-
mation systems (EIS) through the recently

released Java Connector Architecture
(JCA).

With JCA your application can step
outside the J2EE box to conduct business
with third-party legacy systems. The vision
of JCA is that standard connectors will be
developed that allow Java environments at
one end to communicate with legacy envi-
ronments at the other end. However, JCA
implementations are still immature and
the resource adapters still need to grow up.
JCA currently competes with more offer-
ings from mature vendors – such as
WebMethods and Tibco – that directly
connect to ERP systems and already have
sets of predefined adapters. The only catch
is that when you use these vendors’ offer-
ings, you also end up using their propri-
etary execution environments.

The term proprietary is relative. The
moment you choose a particular applica-
tion-server vendor and a particular
resource-adapter provider, you end up
using particular implementations. But, as
an enterprise developer, the good news is
you continue to develop using standard
Java APIs that can apply across different
vendors.

Since the J2EE application-server ven-
dors are extending their containers to sup-
port connectivity via JCA, we can hope
that a couple of years later the connectivi-
ty layer to EIS becomes a standard com-
modity. The actual realization of this
promise, of course, will take a bit of work.
Plus it will be a hard sell for a company to
bundle both vendors’ offerings to a single
customer.

An interesting development in the
marketplace is the partnerships emerging
between the J2EE application-server ven-
dors and the EIS connectivity providers.
One of the primary partnerships recently
announced was the one between
WebMethods and BEA that allows Java

J 2 E E E D I T O R I A LO R
J2

SE
H

om
e

J2
E

E
J2

M
E

J 2 E E I N D E XX

–continued on page 78

AJIT SAGAR J2EE EDITOR
Thinking Outside

the Box...
They say no man is an island.
For J2EE I would say no plat-

form is the universe.
by Ajit Sagar

J2EE FAQ
The answers to your

J2EE questions

JCP Defines the
Roadmap for J2EE

Developing distributed appli-
cations with the J2EE platform

by Jason Westra

Book Review
JSP Tag Libraries

by Gal Schachor, Adam
Chace, and Magnus Rydin
Reviewed by James McGovern

Making the Move to J2EE
Java and J2EE resources

by Charles Arehart

From Niche Solution to
Prime Time: Rules in a

Java Environment
How deductive and reactive

rules can work together to
provide a more effective

semantic integration solution.
by Steve Ross-Talbot

Recognizing and
Eliminating Errors in
Multithreaded Java

How to handle deadlocks and
data races

by Mark Dykstra

Product Review
mycgiserver Hosted by netarray

reviewed by Jason Bell

Design Patterns for
Optimizing the

Performance of J2EE
Applications

An introduction to some of the
reusable designs that can be
used to improve the perform-

ance of a J2EE application.
by Vijay S. Ramachandran

12

16

18

20

22

26

42

44

36

Java COM

J 2 E E F A QQ

16 SEPTEMBER 2001

J 2 E E R O A D M A PA

Java COM

The Java 2 Platform, Enterprise Edition defines
the APIs for building enterprise-level applications.

J2SE.............................v. 1.2

Enterprise JavaBeans API
.....................................v. 1.1

Java Servletsv. 2.2

JavaServer Pages Technology
.....................................v. 1.1

JDBC Standard Extension
.....................................v. 2.0
Java Naming and Directory
Interface APIv. 1.2

RMI/IIOPv. 1.0

Java Transaction API ..v. 1.0

JavaMail APIv. 1.1

Java Messaging Service
.....................................v. 1.0

Useful URLs:
Java 2 Platform Enterprise Edition
http://www.java.sun.com/j2ee/

J2EE Blueprints
http://www.java.sun.com/j2ee/
blueprints

J2EE Technology Center
http://developer.java.sun.com/developer/prod-
ucts/j2ee/

J2EE Tutorial
http://java.sun.com/j2ee/
tutorial/

A
Q

A
Q

A
Q

WHAT TYPES OF APPLICATIONS CAN YOU BUILD WITH J2EE TECHNOLOGIES?
The J2EE platform can be used to build enterprise applications (from Java 2 Enterprise

Edition). Enterprise applications are inherently distributed.
In terms of the Java platform, this means that the components of the applications run

on different JVMs that may be distributed across various machines on a network. Since
the common mechanism for communicating between processes running on different
JVMs in Java is Remote Method Invocation (RMI), this means RMI is the preferred com-
munication protocol for distributed communication in a J2EE application. Since J2EE
supports the Web paradigm, however, communication between the presentation layer of
the application and the business-tier components commonly uses HTTP as the commu-
nication protocol. The J2EE platform is designed to provide server-side as well as client-
side environments for developing multitier enterprise applications.

DO ALL APPLICATIONS BUILT ON J2EE REQUIRE A WEB INTERFACE?
This is a common misconception. Since J2EE defines the servlet and JSP APIs for Web-

based access, some people think that J2EE is meant only for applications with a Web-
based front end. It’s not true that J2EE applications can be accessed only via a browser.
J2EE applications support a variety of clients, including wireless and small devices, rich
Java clients, and non-Java clients.

The confusion arises from the fact that thin Web clients are an increasingly popular
way of building application front ends. That’s why JSPs and servlets have gained popular-
ity in Java. As a result, Java-based J2EE applications are often exclusively associated with
Web applications.

DO ALL J2EE APPLICATIONS REQUIRE EJBS?
The short answer is no; not all J2EE applications require EJB development. That said,

EJBs are the crux of J2EE. The J2EE application platform is built around the concept of
EJB-based business objects. In any distributed programming platform, the middle-tier
business components are built on a common software object component model. COM is
the component model for Windows-based applications. EJB is the object model for J2EE
applications.

Essentially J2EE applications require application containers. In last month’s FAQs (JDJ,
Vol. 6, issue 8), the different containers supported by the J2EE platform – Web containers
and EJB containers – were discussed. A Web-based distributed application that leverages
J2EE technologies to the fullest will make use of both containers: the presentation com-
ponents run in the Web Container and the business components executed on the EJB
Container. All the business components are built as EJBs. The client accesses the applica-
tion via servlets or JSPs. The information can be exchanged in the form of XML/HTML.

However, this is not the only application scenario. Remember that J2EE defines other
APIs besides the servlet, JSP, and EJB APIs. The ones under the spotlight for non-EJB appli-
cations are RMI, JDBC, and JNDI. Application components can use RMI to communicate
between distributed Java objects (which don’t have to be EJBs). JDBC can be used direct-
ly from either servlets/JSPs or a Java client to access back-end data sources, and JNDI can
be used for binding to remote objects via a directory service.

A typical Web-centric application can be built using just servlets/JSP pages and JDBC
for database connectivity – with EJBs completely out of the picture. This still falls under
the category of a three-tier distributed application (with the business logic housed in the
servlets layer. Remember that JSPs essentially equate to servlets at runtime). The access to
the data source can also be decoupled from the servlet layer by moving the data access
logic to another Java object. This Java object can reside on a separate machine from the
servlet and the communication can be facilitated via RMI.

In short, J2EE can be leveraged to build non-EJB applications in many ways. The true ben-
efits of J2EE, however, are reaped when you design your business-logic layer on EJBs. J2EE
application servers provide the environment for designing and executing EJB components,
and only when you leverage the component model supported by J2EE will you benefit from
the development environment that it offers. Without EJB, you’ll end up doing a lot of the work
made obsolete by the emergence of J2EE application servers as the “OS of the enterprise.”

J2
SE

H
om

e
J2

E
E

J2
M

E

Correction in August FAQ: JNDI stands for “Java Naming and Directory Interface,” not “Java Native Directory
Interface.” Thanks to Krishna Kota for catching the error.

Java COM

18 SEPTEMBER 2001

P L A T F O R M U P D A T E

WRITTEN BY
JASON WESTRA

Inever bothered with roadmaps until I was of driving age and began to take trips on my own. Rock climb-
ing drew me to my first trips and involved driving to remote areas of the U.S. It didn’t take long to realize
that a single wrong turn onto a road in the middle of nowhere meant hours of wasted time.Too many wrong
turns soon earned you the nickname Clark Griswold. A wrong turn was especially a problem back in the days
when Montana had no speed limit.You could really get nowhere fast back then.

JCP Defines the Roadmap for J2EE
J2

SE
H

om
e

J2
E

E
J2

M
E

“Nowhere fast” is exactly how I felt
when developing distributed applica-
tions with Java before the J2EE platform.
Originally labeled the Enterprise Java
APIs in 1998, the platform was intro-
duced by the Java Community Process
(JCP) led by Sun Microsystems and a
core team of JSR expert group members.

Since then, the platform:
• Has been renamed Java 2, Enterprise

Edition
• Has incorporated many new APIs
• Has gained great popularity among

the masses of enterprise developers

As of July 2001, more than 27 vendors
have licensed J2EE and are actively incor-
porating the technology into their prod-

ucts. In fact, there have been more
than 35,000 downloads of the 1.3

beta release alone.
The current release of the

J2EE specification (1.2) has
made great strides in mov-

ing server vendors from
providing half-solutions
to providing full plat-
forms for enterprise
development. The spec-
ification essentially
glues together the
numerous Enterprise
Java APIs, such as EJB,
JSP/Servlet, JDBC,
JTA/JTS, JNDI, and
JavaMail. This movement

toward a standard plat-
form has fostered portabil-

ity across vendors and
peace of mind for businesses

investing in Java technology,
and has guided many a wayfarer

to a robust solution built from
J2EE’s solid architectural blueprint.

The JCP has been instrumental in
building the roadmap for the current
release of the J2EE specification and it
continues to shape the future highway
system for J2EE 1.3 and beyond. In case
you haven’t heard, JSR-58 released the
final public draft of version 1.3 on April 9
of this year. It includes some great new
features, such as required support for JMS
(Java Message Service) and EJB 2.0 (JSR-

19), including the new message-driven
bean, which takes advantage of the JMS
APIs. The J2EE Connector Architecture
1.0, also driven by the JCP (JSR-16), is
mandatory, and will allow server vendors
to seamlessly connect to enterprise infor-
mation systems with resource adaptors
that manage resource pooling, transac-
tions, and connectivity issues.

The J2EE 1.3 specification included
requirements for IIOP and XML,
emphasizing portability across the
enterprise and between enterprises.
The final release of this specification is
Q3 2001, and while I look forward to its
release, I’m already looking at the
future roadmap of the platform.

A gander at the JSR list on JavaSoft’s
Web site (http://java.sun.com/about-
Java/communityprocess/search.html)
will show you where the action is.

While I already noted some of the
JSRs that have influenced the J2EE
specification to date, many more excit-
ing JSRs are looking to shape the future
of the platform. Work is already under-
way to firm up loose ends with the J2EE
Connector Architecture. JSR-112 will
have a Community Draft available in
Q4 2001. Unfortunately, this means
we’ll probably have to wait until J2EE
1.4 or so to see its inclusion.

An interesting effort is taking place
to define management of J2EE applica-
tions. JSR-77 is defining a management
model that will:
• Allow management of heteroge-

neous vendors from a single tool
• Provide integration with existing

management systems
• Allow for a single tool to manage het-

erogeneous vendor implementations

One of the APIs many feel is missing
from the J2EE Platform is JMX (Java
Management Extension or JSR-3).
However, the J2EE platform architects
have expressed a more open approach
toward management in the J2EE specifi-
cation and don’t directly support JMX
over other management technologies.
Thus JSR-77 looks to provide standard-
ized management for J2EE applications
by including support for existing tech-

nologies such as SNMP, JMX, and WBEM.
JSR-77’s time line is for a Proposed Final
Draft in October 2001, with inclusion in
the J2EE 1.4 release of the specification.

Next, the mission of JSR-88 (my per-
sonal favorite) is to determine require-
ments for the portable installation and
configuration (“deployment”), and
removal (“undeployment”) of J2EE
modules across J2EE servers. J2EE has
been adopted at an alarming rate, and
enterprises with multiple J2EE vendors
have discovered problems deploying
applications across their heterogeneous
environments. The J2EE specification
doesn’t address portable deployment of
applications across heterogeneous
servers; however, with the inclusion of
the J2EE Deployment API into the J2EE
specification, portable deployments will
become reality. JSR-88’s milestones are a
Public Draft around Q2 2001, and inclu-
sion into J2EE 1.4 when it’s released.

Last, JSR-117 (J2EE APIs for
Continuous Availability) looks to be an
important contributor to the J2EE
specification of the future. It will
address shortcomings in the current
specification around ensuring high
availability of J2EE applications,
including defining a portable API for
failover management, online upgrades
of J2EE components, logging conven-
tions for system administrators of J2EE
applications to better monitor and
read system reports, and error man-
agement for system-level exceptions
so as to offer automatic recovery of
state and transactions. Once this JSR is
finalized, it will prove to be a powerful
inclusion in the J2EE specification.

As both National Lampoon’s
Griswold and I know all too well:
“Getting there is half the fun!” So if you
ever feel you need a roadmap to point
you in the right direction, take a look at
maps the JCP is providing. If you have
the urge to participate in the JCP, don’t
be shy. Anyone can be a member and
contribute to the J2EE specification or
other technology roadmaps of the
future. Why not you?

AUTHOR BIO
Jason Westra, an active

member of the Java
Community Process, is

currently on the expert
group for JSR-88, J2EE

Deployment API. jason@sys-con.com

Java COM

20 SEPTEMBER 2001

Tag libraries
were intro-
duced into the

Java specification to
solve many of the limi-
tations of using
scriptlets (bits of Java
code) as part of a JSP
page. The main limita-
tion is that advanced
page design may require
the designer to under-
stand Java to perform
tasks such as constructing a loop,
if/else blocks, and sending an e-mail,
and so on. Art designers and HTML
developers are creating many pages in
today’s Web development environ-
ment, making this approach less than
optimal. Tags provide a mechanism
that will allow a non-Java developer to
utilize Java functionality without having
to learn the language. Tags can also
assist Java developers in separating pres-
entation from control. Tag libraries were
introduced as part of the JSP 1.1 specifi-
cation.

JSP Tag Libraries is published by a
small book company (Manning Publi-

cations) known for writing books of very
good quality. As this publishing company is

smaller than the Wroxes and Addison-
Wesleys of the world, you may not find it on

the local bookstore’s shelf, and may have to
order it through Amazon or Fat Brain.
Reasonably priced at $44.95, it has about 600
pages, divided into 15 chapters. This book
doesn’t waste your money by selling you freely
downloadable Javadocs.

As I started to read, I noticed that the book
was very well thought out. It contained only
minor typographical errors and had a good
flow. This book is not sloppy like others I’ve
read in the past, and I appreciate that the
authors actually understand how to use the
English language. It doesn’t read like a manu-
al but more like a conversation, developer to
developer.

Part 1 begins with a light introduction to
Web development using Java. It covers how
JSPs are developed and goes into sufficient
detail on their strengths as well as their limita-
tions. Later chapters cover a tag’s life cycle
and how it may be used. Typically, an experi-
enced developer may decide to skip over this
section, but I recommend reading it, as it also
has some hidden gems on JSPs.

Part 2 covers basic techniques on how to
develop a tag. The first useful tag that is devel-

oped is for sending e-mail.
Other tags that are intro-
duced cover interaction
with a JavaBean, using tags
for validation, assertions,
control of flow, as well as
accessing the applica-
tion’s back end. Chapter
8, one of the best chap-
ters, covers writing a tag
that discovers a

JavaBean’s methods and events at run-
time (reflection), a useful technique for all tag
developers.

Part 3 dives into advanced techniques for
creating conditional tags to insulate HTML
developers from the tricky syntax of creating
if/else and loops using scriptlets. Chapter 11
introduces usage of tags with Model 2 archi-
tectures. Chapter 12 focuses on using tags in a
J2EE environment, and covers usage of EJBs
and integration with business logic. There is
an awesome discussion on using tags along
with JNDI. Within this chapter, two really
powerful tags are introduced, one for looking
up a bean’s home and remote interfaces, and
another for connecting to a JDBC data source.

Part 4 covers two different case studies:
building a JDBC-driven Web store and an EJB-
driven WAP store. Part 5 closes the book nice-
ly with architecture and design advice along
with a healthy dose of tips and tricks that will
help make your applications reusable, main-
tainable, and scalable.

I could find only a single flaw in the book:
I was hoping there’d be mention of other tag
libraries that are a part of many application
servers such as WebLogic or JRun, as their
libraries are pretty good. I’d especially love to
see a chapter or two on the Jakarta tag
libraries in a future edition of this book.

JSP Tag Libraries should be part of every
developer’s library and is worthy of being on
the same shelf as UML Distilled, Design
Patterns by the Gang of Four, and Inside
Servlets by Dustin R. Callaway. This is the first
book on this topic that not only covers the
nuts and bolts of using tags, but also shows
how it can fit into your overall architecture. I
look forward to other books by these authors
and would recommend them without delay. I
rate JSP Tag Libraries only one-quarter star
shy of a possible five stars.

Next I’ll review Effective Java by Joshua
Bloch, published by Addison-Wesley. James
Gosling, father of the Java language, men-
tioned this book during his keynote speech
at JavaOne. Let’s see if it lives up to its
name.

JSP Tag Libraries
by Gal Schachor, Adam Chace,
and Magnus Rydin
Published by
Manning Publications Co.
Price: $44.95

info

B O O K R E V I E W

JSP
Tag Libraries

REVIEWED BY JAMES MCGOVERN

jmcgovern@enherent.com

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

22 SEPTEMBER 2001

The definition of a journeyman is “a
competent and reliable performer or
exponent.” To me, it connotes a day-to-
day working craftsman.

Does this describe you? Are you like
a journeyman infielder in professional
baseball (apologies to international
readers)? It’s not that a journeyman isn’t
valuable to the team. Journeymen con-
tribute in a professional, competent,
workman-like way, and strive to
improve their abilities and refine their
craft.

That’s the goal of the Journeyman
column, which began nearly two years
ago as a monthly column in our sister
magazine, ColdFusion Developer’s
Journal: to share tips and techniques
that aren’t quite advanced, but aren’t
quite beginner either. With four years as
a Web application developer (mostly in
ColdFusion), trainer, and writer, and 20
years of IT experience, I hope I’m in a
position to discover and share useful
observations.

Filling a Gap for Both Experienced
and Newcomer J2EE Developers

Some of you may scoff at my men-
tioning experience in ColdFusion
(which is really a shame, since it’s often
unfairly maligned). The bottom line is
that it’s a Web application development
platform, just as ASP, PHP, and J2EE are.
Admittedly, each has its own distinct fla-
vor and unique capabilities.

But when it comes down to it, there
really are quite a lot of similarities
among all Web application development
platforms: HTTP processing, opportuni-
ties for client enhancement, clever
form-processing tricks, effective data-

base integration, session processing,
and lots more.

As I move into the J2EE arena I
notice that quite a few techniques and
approaches used by developers on
those other platforms haven’t made it
into the toolbag of many J2EE develop-
ers. Perhaps it’s because the focus for
them has been more on simply getting
into Web apps as they move from Java
client to server development. But we
who develop on those other platforms
have been doing Web apps for years,
playing all manner of tricks with
browsers, sharing data between Web
sites, and more. Maybe these experi-
ences can be of value to J2EE develop-
ers.

So on the one hand, the column will
speak to experienced J2EE developers
by offering Web application develop-
ment ideas that may be new to them.

On the other hand, if you’re making
the leap from another Web app develop-
ment platform to J2EE, you have an
entirely separate set of problems, not
the least of which is coping with learn-
ing Java in general, and then all the
capabilities of J2EE. You not only need to
figure out how to apply your previous
Web app experience in this new plat-
form, but you need to deal with peculi-
arities and unique features enabled in
J2EE.

The problem is, where do you begin?
Do you start with a J2EE book? A JSP
book? A servlet or EJB book? You’d better
be careful. Almost all of these will pre-
sume you already understand Java. This
may have made sense previously in that
most writers were speaking to the vast
army of Java developers making the

move to the server-side, or enterprise,
platform. But it leaves many newcomers
to both Java and J2EE unable to start
with those books.

Many introductory Java books, arti-
cles, and classes, on the other hand, pre-
sume that the reader is coming from a C
or even C++ background (or no pro-
gramming background at all). Again,
that may have been a reasonable mar-
keting decision in the early days of the
transition to Java, but as more Web app
developers with ASP (VBScript) or
ColdFusion (CFML) make the transition,
they’re often hard-pressed to appreciate
the analogies and references to how
much better (or simply different) Java is
than C and C++.

A particularly strong example of this
is the almost paltry coverage of objects,
object-oriented design, and object-ori-
ented programming in many introduc-
tory texts. Often it’s given just a chapter
(and in some books, just a section),
which does a terrible disservice to new-
comers to Java, though it may have
made sense speaking to C++ program-
mers.

Another dilemma is that many of the
resources available presume that (1) all
those new to Java want to learn about
building Web clients, and (2) all those
new to J2EE are experienced Java devel-
opers “moving up” but lacking Web app
experience. It can be a frustrating expe-
rience for many.

So this column will also speak to new
J2EE developers who have previous Web
app development experience, helping
them make the transition to the power-
ful and incredibly rich Java and J2EE
platforms.

Making the Move to J2EE

WRITTEN BY
CHARLES AREHART

Welcome to the first installment of Journeyman J2EE.
I’m honored to present this new bi-monthly column of rumina-
tions and reactions as I, like so many of you, make my foray
through the vast world of J2EE application development and
deployment. But this isn’t intended just for newbie J2EE develop-
ers. On the contrary, I hope to also share tips and techniques of
value to experienced JSP/servlet developers.

J O U R N E Y M A N J 2 E E

Java and J2EE resources

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

A J2EE Newcomer’s Introductory Java Library
Still, there’s no getting around the

fact that the first step is to learn the lan-
guage and platform. Some may suggest
that you can create a JSP page without
knowing Java, and that may be true in
the most generous sense, but you won’t
get far beyond the most trivial examples
without a solid grounding in the funda-
mentals of Java.

Let me take a moment and com-
mend a few highly regarded introducto-
ry books: Ivor Horton’s Beginning Java 2,
Cay Horstmann and Gary Cornell’s Core
Java 2, Bruce Eckel’s Thinking in Java,
and one you may not yet have heard of,
Jacquie Barker’s Beginning Java Objects.

Beginning Java 2 gets nearly unani-
mous praise for its lucid introduction to
Java. More than a third of the book
(seven out of 20 chapters) focuses on
client-side application development,
but the first several chapters are an
excellent introduction to core Java.

This of course leads nicely into the
book of the same name, Core Java 2.
Again, it’s roundly applauded as a semi-
nal work for its encyclopedic yet
approachable coverage – and indeed
worthy of the praise – but it, too, is heav-
ily laden with client-side development
chapters (four out of 12).

Yet another foundational book is
Thinking in Java (2nd ed.), a tour de
force introduction to Java as not just
another language but as a new way to
design and code applications (with only
one of the 15 chapters – appropriately
late in the book – covering applet devel-
opment).

I highly recommend his Hands-on
Java CD-ROM as well, which parallels
the book and offers a multimedia ver-

sion of his seminar of the same
name. If you can get a

portable MP3 play-
er (there are

some that
w i l l

play

straight from the CD, or you can down-
load files to it), you can listen to it on the
train, during a workout, in the car, or
wherever, and hear it over and over. It’s a
wonderful way to get grounded in the
fundamentals (and some of the dark
corners) of Java.

Finally, the most recent of these is
the one that I feel does the best job of
filling in the gaps left by the others in
their coverage of objects and object-ori-
ented programming: Beginning Java
Objects. While some have said it’s not the
first book they’d recommend for new-
comers to Java, I wonder if they’re bring-
ing a bias of already understanding
objects. I found Barker’s book wonder-
fully refreshing and straightforward on
that subject, considering the alterna-
tives, while also serving as an adequate
introduction to the Java language.

Indeed, all these books are excellent
resources for even the more experienced
programmer. As Barker points out, it’s
easy to write Java code that doesn’t truly
leverage objects. It’s a terribly ineffective
way to do so, but entirely possible. I even
recommend it to experienced Java
developers (all but the most experi-
enced or cynical).

Of course, these aren’t the only Java
introductory books (not even a fraction
of the total number), nor are they neces-
sarily the best for everyone. This is just
one person’s opinion (backed by similar-
ly favorable reviews and awards on
many sites). Before I leave the subject of
getting a good head start on Java, there
are several Web sites you can refer to
(perhaps the most prominent being
http://java.sun.com), and magazines
(including the one you hold in your
hand) as well. Be sure to ask your
cohorts for their recommendations.
There are too many to list.

Getting Started with J2EE: Resources
Now that you have a few resources to

get you off the ground with Java, or if
you’re already comfortable with the core
language, the next step is to become
familiar (even intimate) with the J2EE
platform. Again, there are several

resources for this, including books,
Web sites, and of course the maga-

zine you’re reading, among oth-
ers.

As mentioned before, http:
//java.sun.com may be the

best place to get started,
specifically http://java
.sun.com/j2ee/. This in-
credibly rich and deep
site has a seeming
never-ending supply of
resources for the J2EE

developer, including the J2EE Tutorial,
Blueprints, case studies, tools, and white
papers.

Other prominent portal (informa-
tion) sites include www.theserver-
side.com, www.jguru.com, www.jspin-
sider.com, and more. Even if you’re
using a competing Java application serv-
er, you should also consider sites such
as www.ibm.com/developerworks/ and
http://.developer.bea.com. These offer
documentation, tools, newsgroups,
source code, articles, user groups, and
many other resources.

As for books, there are many popular
ones from a variety of standpoints,
including:
• Designing Enterprise Applications

with the Java 2 Platform, Enterprise
Edition (the printed version of the
J2EE Blueprints)

• Core Servlets and JavaServer Pages
(Marty Hall)

• Professional Java Server Programming
J2EE Edition (Wrox Press)

There are many more, including
books on EJBs, servlets, and JSPs. Ask
your colleagues, or visit portal sites and
book review sites for more opinions.
Just be aware that almost all of these
books presume you have Java experi-
ence. And even then they may presume
you don’t have prior Web application
development experience, so be pre-
pared for some review-level material
on those aspects (such as, “A form can
have 5 kinds of input controls...”).

Finally, as you embark on your own
journey into the world of Java and J2EE,
you may also need to learn about such
topics as UML (and object-oriented
design in general), patterns (both gener-
al design and J2EE), and many more
related topics that separate the new-
comer from the professional.

Summary
Clearly, for those making the transi-

tion from Web application develop-
ment in ASP/CF/PHP, and others,
there’s a need for a book that meets
both the foundational needs of learn-
ing Java (without too much client-side
focus) while also offering foundational
J2EE material (without presuming Java
experience or repeating already under-
stood Web app development funda-
mentals). I hope someone out there is
listening and realizes there’s a market.
I’ve considered it myself, but I’m busy
enough for now! I hope you’ll join me in
future installments of Journeyman
J2EE.

J O U R N E Y M A N J 2 E E
J2

SE
H

om
e

J2
E

E
J2

M
E

carehart@systemmanage.com

SEPTEMBER 200124

AUTHOR BIO
Charles Arehart is a
20-year IT veteran

with experience
spanning a range of

technologies, including
very large-scale

database systems. For
the past four years,
he’s been an active

trainer, writer, and
consultant in

enterprise Web
application

development.

Java COM

26 SEPTEMBER 2001

J2
SE

H
om

e
J2

E
E

J2
M

E

ver the last two decades rules
have become an increasingly
important part of the information
technology landscape. In fact,
deductive rules have been applied to
databases since the inception of SQL and
form the basis of policy management and
decision making at most corporations. However,

the rules are changing. A newer reactive rules solution based on
events, conditions, and action (ECA) has come to the foreground.

In addition, the rise of the Java runtime and development
environment from a niche solution to prime time is also chang-
ing the rules of the information technology landscape. With Java
as the core technology for embedded and enterprise applica-
tions, rules are an ideal means for businesses to harness the
power of the language for a competitive advantage.

This article examines both types of rules, deductive and reac-
tive, shows when and how to apply them, and explains how rules
can work together to provide a more effective semantic integra-
tion solution. It also examines the different uses of rules and
applies rule technology to J2ME for desktop applications and

J 2 E E
for enterprise
applications.

This article looks at the use of rules for managing personal
workflow, business transactions, and Web content in J2ME,
J2EE, and JSP environments, respectively. It also covers the
application of rules to B2B, customer relationship management
(CRM), and supply chain management (SCM) applications.

An Overview of Rules
According to the authoritative business report, GUIDE

Business Rule Project (1995), a business rule is “a statement that

O

Java COM

28 SEPTEMBER 2001

defines or constrains some aspect of the business. It is intend-
ed to assert business structure or to control or influence the
behavior of the business.”

As rules have become an increasingly important aspect of
the management of the IT landscape, this article examines the
need for rules using a financial services example and looking at
the different rules and how they can be applied to business-
critical events in financial services. In the past, application
builders have embedded the fundamental business-processing
rules directly into application code. This led to an explosion of
new applications when applications became too unwieldy and
inflexible to meet business needs. It also led to an increase in
maintenance as applications were modified to incorporate the
necessary changes. This is more apparent in financial services
where regulatory requirements and the personalization neces-
sary to keep or gain market share are critical business factors.

Many systems have been written and rewritten trying to
keep up with the changes. Business requirements are chang-
ing faster than applications can be created and/or modified.
Rules offer a way of encapsulating the business semantics and
promoting them to the surface in the same way that databas-
es enabled the separation of data from an application. The
first attempts at doing this date back to E.F. Codd, the founder
of relational databases.

Capturing the semantics, or gaining an understanding of
what is really going on in terms business people can under-
stand, is one of the challenges to rules-based solutions. Rules
are not only for computers, people also use them for heuris-
tic decision making. Many a trader monitors events from a
desk, taking in news stories, price changes, trading behavior,
current position, and even credit exposure information, then
uses it to decide whether to buy or sell a particular financial
instrument. The layman may think the decision is based on a
“thumb-in-the-air” approach, but it’s not. Experience and
judgment are valuable assets in today’s trading environ-
ments. No rule system can replace this, but it should be able
to support it.

Managing events, bringing them together, and actively
supporting the people who make the decisions is the primary
goal of rules-based solutions. Rules enable us to capture the
business semantics embedded in applications to support the
decision-making processes in an organization. Businesses
need to remain flexible so that the IT infrastructure can sup-
port complex real-time decision making.

Two Kinds of Rules – Deductive and Reactive
The deductive rule approach, which uses forward and back-

ward reasoning, has been around for the last 20 years and was
born from the artificial intelligence (AI) community. Deduction
(or inferencing) is a means of deducing facts from an existing
knowledge base. Unification is a technique that’s commonly
used to infer or deduce facts. A typical example follows:
• Rule: A preferred customer is one who has spent more than

$10,000 in the last month.
• Fact: John Doe spent $11,000 last month.

From the fact and the rule it’s possible to deduce that John
Doe is indeed a preferred customer. Another, more complex
goal-oriented example is shown below:
• Rule: x is the grandfather of z.
• Implication: x is the father of y and y is the father of z.
• Fact: Joe is the father of John.
• Fact: John is the father of Fred.

This form of reasoning is based on
rules, implications, and facts. It’s goal-
oriented, allowing us to deduce that
“Joe is the grandfather of Fred” by
using unification over the rules, implications, and facts that
exist in the knowledge base. This technique is one in which you
attempt to prove conclusions. It allows reasoning to take place over
unbound variables, which the ECA rules aren’t well suited for.

The Rete algorithm is one of the best-known algorithms
for doing this. It builds up a treelike structure for the knowl-
edge base and deduces facts efficiently (or proves conclu-
sions) by evaluating only what is necessary. This saves enor-
mous processing time and memory by targeting only those
parts of the “tree” that need to be reevaluated against a con-
clusion. Typical systems based on this technique are Nisus
Inc.’s Nisus rules engine, iLOG’s JRules, and Brokat’s Advisor/J.

Reactive or ECA rules have been around for a shorter time;
however, their heritage is in the definition of Sequel2 (from the
article “Implementation of a Structured English Query
Language,” by Morton M. Astrahan and Donald D. Chamberlin)
and their triggers are in programming language exception han-
dling as far back as PL/1. In the 1990s, ECA rules were a funda-
mental component in active databases, and more recently in
the semantic integration that underpins B2B and Web services.

ECA rules are well suited to event-centric problems, which
deal with change and how to manage it. In a database trigger,
they might look for a deletion of a tuple from a department
table, and as a consequence, delete all employees. In a more
complex active database example they might look for the
deletion of the same department tuple, but seek guidance on
whether this is meant to be a department name change, trans-
fer, or a downsizing based on departmental pruning. In the
simple trigger case, the semantics of the deletion can’t be
modeled, but they can in the active database example.

In the late 1990s, ECA rules started to leave the confines of
the database transaction world and exist as agents of system-
to-system workflow. In this context they’ve been used as rule
agents to police business change. The rules help consolidate
business events into business transactions and monitor busi-
ness events to enable an enterprise to react in a more ad-hoc
fashion, capturing some of the business heuristics that under-
pin modern business decision making.

An example of a business transaction in a financial servic-
es setting is shown below:

ON NewTrade EVENT FOLLOWED BY A SettledTrade EVENT WITHIN 5 MINS

CONDITION NewTrade.id MATCHES SettledTrade.id AND
NewTrade.amount EQUALS SettledTrade.amount
ACTION PUBLISH "Trade settled fully"

CONDITION NewTrade.id MATCHES SettledTrade.id AND
NewTrade.amount GREATER SettledTrade.amount

ACTION PUBLISH "Partial settlement"

ON TimeOutException EVENT OF A SettledTrade
ACTION PUBLISH "Trade failed to settle in time"

In this example the rule is composed of a target event, the
NewTrade, and followed by an event, the SettledTrade. The rule
states that when a NewTrade and a matching SettledTrade are
found and the amounts match for the two events, the trade is
said to be fully settled. If, however, the amounts don’t match,

J2
SE

H
om

e
J2

E
E

J2
M

E

J2
SE

H
om

e
J2

E
E

J2
M

E

the trade is said to be partially settled. And if no matching
SettledTrade event is found within 5 minutes, the trade is con-
sidered to have failed to settle in time. This is a fairly typical
business-transaction monitor process that matches orders to
confirmations, and models time relationships to do so. This
same example is shown graphically in Figure 1.

ON NewTrade EVENT FOLLOWED BY AN ExposureChange EVENT WITHIN 30
MINS
CONDITION NewTrade.longName EQUALS "Barclays Bank" AND
ExposureChange.country.longName EQUALS "Guatemala" AND
ExposureChange.limit/0.9 LESSTHAN ExposureChange.limit-

ExposureChange.remaining
ACTION CALL RiskMgmtSystem.Embargo("Mexico")

A monitoring rule with flexible teeth is also shown. This
rule looks for NewTrade events followed by ExposureChange
events from a risk system. If the trade is for “Barclays Bank,”
the country of origin is “Guatemala,” and only 10% of the
allowable limit is left, all trades to “Mexico” are embargoed.
Why would we want to do this? Simply, it’s the management of
the unpredictable that is one of the many benefits of ECA rules.
It’s the ability to juxtapose situations (in the form of events and
conditions) and act on them (in the form of actions) that’s crit-
ical to the ability of a business to react. This is what provides a
competitive edge to the decision making within an organiza-
tion. It allows the systems to support the users rather than
force them to change their habits to work with the systems. An
example of an ECA system that provides the basis for reactive
rule specification in RuleML is SpiritSoft’s SpiritIntellect.

Rules and Java
Java, especially with J2EE, has breathed new life into rules

technology. Since last year two new Java Community Process
(JCP) initiatives have started, JSR 87 and JSR 94, both of which
have rules as their central component. As the shift has moved to
Web services over a semantic Web, we’ve seen the rise of
RuleML from W3C, the most mature of the rules initiatives. The
fundamental reason for this is a drive to capture business
semantics and to increase the scope for personalization. In
both cases the initiatives are predicated on a desire to achieve a

more semantic form of business
integration in a B2B Web services
context.

The role of Java should not be
underestimated. The ability to call Java code from within
rules has led to a more fundamental integration story for rules
technology. The role played by technologies such as EJB applica-
tion servers, JSP, the JMS API, and XML have all contributed to the
rise of rule-based technology as businesses look to differentiate
their offerings. This has led the way in promoting personalization
of offerings to customers through EJB and JSP technology, which
allows users to be in control of policy decisions as they relate to
applications at the user interface and business workflow levels.

Since rules in a Java environment have been the focus for
the last 12 months, we’ll look at how rules can be used in dif-
ferent Java platforms with different Java technologies. Rules
engines, along with many other systems, have suffered from
integration problems with their surrounding environment.
Java has made it possible for rules to dynamically call out to
Java methods to incorporate flexibility into a system that has
been lacking. To enable smoother and more cost-effective
integration, the Java programming model and supporting
environment makes it possible to introspect Java objects and
classes while a program is running. This achieves a more
dynamic integration between rules and Java, particularly if
the rules engine or framework is written in Java.

Rules and J2ME
In a world where we’re always connected, we need to ensure

predictable results. By definition, a mobile environment inherent-
ly includes variability of the network and has limit-
ed bandwidth. New paradigms are required for
transacting business that deals with decoupled,
shareable business-transaction contexts and
enables adaptable applications to be constructed.

PocketWorkflow allows the user to configure
mobile applications to be both adaptable – graying
out options as changes to the effective Quality of
Service (QoS) occurs – and transactional – by pro-
viding on-the-fly business transaction delegation.
To do this, PocketWorkflow uses ECA rules to pro-
vide a framework for adaptability and for business
transaction delegation, and uses deductive rules to
deduce overall context while sifting through e-
mail, voice, and other information sources.

The marriage of deductive and ECA rules in
this domain shows that each plays an important
part in the overall solution. Taking advantage of
the data-centric model of deductive rules applied
over a knowledge base, it’s possible and cost-
effective to deduce short-term context, which
can act as a filter to increase relevance to mobile

devices and ensure that they’re not swamped with irrelevant
information. Leveraging the event-centric model of ECA rules,
it’s possible to provide user-centric, flexible PocketWorkflow to
manage applications’ adaptability to a changing environment
and the business transactions that they participate in.

Rules and J2EE
In the world of J2EE, rules have been increasingly used to

personalize applications. It has addressed two solution spaces
to date, and with the advent of Web services, a new set of
requirements arises.

FIGURE 1 An ECA rule

Java COM

30 SEPTEMBER 2001

Existing requirements relate to validation and verification of
data entry (e.g., orders) and the management of integrity con-
straints within EJB application servers. Newer, Web services–related
requirements need to be met to ensure declarative privacy and dig-
ital rights management. Both of these are topics that have received
much attention at W3C under Web services and the semantic Web.

An architectural view of J2EE technology and rules is
shown in Figure 2.

This architecture positions rules with respect to the require-
ments they need to meet and the technologies as they are today.

Rules and JSP
Rules have a natural role to play in JSP-based solutions. Being

closer to the front of the application, they play an important role
managing validation and verification issues as they relate to
order entry and what you should be seeing. Validation and verifi-
cation of order entry is best done nearer the user to prevent spu-
rious server-related bottlenecks. Such validation and verification
is best served if it can be flexible and personalized. Using a rule-
based solution enables this to be done in a cost-effective manner.

Ensuring the integrity of a form is something that deduc-
tive rules systems have long been used to. Once the form is
filled in, ECA rules play a role in managing the business trans-
action. Further requirements that underpin what you might
see can be driven through deductive rules and their ability to
police digital right management and infer what you can see.
In this role they play a key part in ensuring that the dynami-
cally generated HTML pages are the correct ones, and that

you see what you’re entitled to see
and nothing else.

Rules and EJB
Rules applied to an application server have been a

hot topic for at least two JavaOne Conferences. Indeed,
many users of EJB technology are using rules to add flexible
integrity constraints through a specialized form of transac-
tion-coupled ECA rules. Deductive rules are used to manage
policy issues as they relate to what you can and cannot see,
and the ECA rules further augment this by enabling the user of
the technology to express how things should happen in a per-
sonalized context. In this way, a deductive rule might allow an
application to understand who is a platinum, gold, silver, or
bronze customer based on their service-level agreement, and
supply this information to an ECA rule that determines which
internal components are to be activated (e.g., maybe no cred-
it checking is done for a platinum customer, maybe limited
credit checking is done for gold, and so on).

These policy decisions make the difference between ser-
vices that are okay and those that are responsive to customer
demands. They enable applications to be built that are flexible
enough to take advantage of changing business models and
therefore meet changing business requirements.

Rules and JMS
JMS is not an obvious place for rules to play a part. If we step

back and look at workflow in the early 1990s, many of the work-
flow products that had their genesis at that time used asyn-
chronous messaging techniques to act as a distribution chan-

nel for workflow events. In the early days of IBM’s
Flowmark (now MQWorkflow), an internal asynchro-

nous messaging bus did all that MQSeries did. So JMS
and event management as it relates to managing busi-
ness events cries out for event-centric rule mecha-
nisms to describe and manage the flow of events as

they relate to business transactions and business
processes.

Event-centric rules are a natural way to express process
flow between applications, services, and components. In a
JMS context they provide a way to express process flow that’s
decoupled from the underlying application services. They
extend and complement what can be achieved within a JSP
and EJB environment by providing a distributed and highly
scalable way to manage business transactions and sophisti-
cated flexible monitoring facilities.

Standards and Rules
In this section we look at rules in the context of a number of

standards initiatives. We cover JSR87 and the agent services ini-
tiative, JSR94 and the Java rules initiative, and the work in
W3C.org on RuleML and the semantic Web.

Agent Services and Rules
Like many of the JSR initiatives, JSR87 defines a set of

objects and service interfaces. In the case of JSR87,
these are to support the deployment and operation of
autonomous communicative agents based on the
Foundation for Intelligent Physical Agents (FIPA)
abstract architecture. This, in turn, is influenced by

the work of Darpa Agent Modeling Language (DAML),
which has been a major part of the semantic Web initia-

tive at W3C.

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 2 J2EE and where rules fit

SEPTEMBER 200132

Java COM

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

34 SEPTEMBER 2001

Agents that can be discovered and are flexible and personal
have given rise to rules-based flexibility. It’s in this field that JSR87
is important and in particular its relationship to FIPA, DAML, the
semantic Web, and RuleML. This is discussed later in the article.

JSR94 – Rules and Enterprise Java
JSR94 defines a Java runtime API for rules engines. The API

prescribes a set of fundamental rule-engine operations. This
set is based on the assumption that most clients will need to
execute a basic multistep rule-engine cycle that consists of
parsing rules, adding objects to an engine, firing rules, and
getting resultant objects from the engine. It doesn’t separate
rule types (deductive and ECA), assuming some variant of a
Rete model of rule computation. It also doesn’t look at defin-
ing a common rule language. Rather it looks at a partial map-
ping to a Rete-based rule framework to define a common
parsing API for rule sets so that they may be shared.

The work of W3C on RuleML goes substantially further.
However, JSR94 is the only JSR that’s been initiated to deal
with rules, albeit a subset of the rule space. It’s interesting to
note that JSR94 refers to business rules from IBM and was the
work of Benjamin Grosof, one of the key players in RuleML.

RuleML and Java-Based Rules
Rules for the Web have become a mainstream topic and have

been identified as a design issue for the semantic Web since its
inception. RuleML is an open initiative that seeks to work toward
an XML-based markup language that permits Web-based rule
storage, interchange, retrieval, and firing/application. It’s the only
rule standards initiative to deal with deductive and reactive rules
within the same framework. It openly seeks to leverage reactive
and deductive power to provide a more meaningful interchange
of rules-based technology, which is necessary to power the next
generation of Web services and semantic Web applications.

Being a W3C initiative provides a language-neutral
approach that’s likely to lead to wider ranging results than one
that’s tied to Java. The incorporation of reactive rules through
an ECA-like rule definition provides this initiative with a wider
canvas than just deductive-based solutions. Having both
types of rules under the same umbrella may lead to more
interesting and pervasive solutions.

Rules for the Semantic Web and Web Services
Rules are a fundamental currency in managing Web services.

For the first time Web services have dealt with the flow of control
between components (or services) that’s required to achieve
some goal. In a business context this maps to a business transac-
tion. This flow can be defined by a choreographed set of events,
and the control and flexibility can be expressed using ECA rules
and enhanced using deductive rules. This enables service chore-
ography to take advantage of the natural event-centric model of
ECA rules and the data-centric model of deductive rules to declar-
atively express conditions (e.g., are you a preferred customer?).

The semantic Web work of W3C is highly relevant to all of this.
Indeed, Tim Berners-Lee, director of the W3C, has gone on record
saying, “Web services are an actualization of the semantic Web.”
To this end, much of the work on DAML, RDF, and RuleML has a
high degree of relevance to Web services, and it’s likely that Web
services will be the first user of the technology that underpins the
semantic Web. It’s our belief that RuleML and RDF-like semantic
decoration will enable better service discovery and personaliza-
tion to take place. This in turn will lead to a new generation of
Web-based application solutions.

Summary
What I’ve shown is that there

are fundamentally two types of
application areas in which rules
have a major role: data-centric and event-centric. I’ve
illustrated that deductive rules are well suited to data-cen-
tric problems and ECA rules to event-centric problems. I’ve
examined the different deployments of rules from J2ME to
J2EE, and looked more closely at how the different rule mod-
els add value. I’ve given a précis of current standards-based
work, looking at the JSR initiatives for agents and rules, intro-
ducing RuleML, and tying them together around Web services
and the semantic Web.

The rules that we discussed relate to personalization
based on standard license agreements with services that
can impact what you see, what you do, and how you do it.
These are all critical to the success of any B2B solution, SCM
offering, or ERP initiative. All these business domains
require value-added flexibility to enable their systems to
meet the needs of the enterprise and the multiplicity of
roles within it.

References
1. Snell, J. (2001). “The Web Services Insider, Part 2: A

Summary of the W3C Web Services Workshop.” April.
www-106.ibm.com/developerworks/webservices/
library/ws-ref2/?dwzone=webservices

2. GUIDE Business Rule Project, Final Report, Nov 6, 1995.
3. Tombros, D. (1999). An Event- and Repository-Based

Component Framework for Workflow System
Architecture. PhD Thesis, University of Zurich, November.

4. Astrahan, M.M., and Chamberlin, D.D. (1975).
“Implementation of a Structured English Query
Language.” Comm. ACM 18:10, pp 580–587.

5. Forgy, C.L. (1982). “Rete: A Fast Algorithm for the Many
Pattern/Many Object.” Pattern Match Problem. Artificial
Intelligence. pp 17–37.

6. Ross-Talbot, S., Brown, G., et al. (1998). “Building Globally
Adaptive Systems.” ObjectExpo, Europe. November.

7. Ross-Talbot, S. (1998). Object Databases in Practice.
Prentice Hall.

8. RuleML: www.dfki.uni-kl.de/ruleml/
9. Codd, E.F. (1979). “Extending the Database Relational

Model to Capture More Meaning.” ACM Transactions on
Database Systems 4. pp 397–434.

10. Fritschi, H., Gatziu, S., and Dittrich, K.R. (1997). “FRAM-
BOISE: An Approach to Construct Active Database
Mechanisms.” Technical Report 97.04, Department of
Computer Science, University of Zurich. ftp://ftp.ifi.
unizh.ch/pub/techreports/TR-97/ifi-97.04.ps.gz

11. Hsu, M., Ladin, R., and McCarthy, D. (1988). “An
Execution Model for Active Data Base Management
Systems.” Third International Conference on Data and
Knowledge Bases, June.

12. Business Rules for Electronic Commerce: www.research.
ibm.com/rules/home.html

AUTHOR BIO
Steve Ross-Talbot is CTO and principal founder of SpiritSoft. He holds the position of
honorary research fellow at Napier University, Edinburgh, Scotland, having published work
ranging from query optimization to advanced ECA-rule architectures.

steve.ross-talbot@spirit-soft.com

Java COM

36 SEPTEMBER 2001

Recognizing and Eliminating
Errors in Multithreaded Java

T I P S & T E C H N I Q U E S

WRITTEN BY
MARK DYKSTRA

Threads are essential to building high-performance, scalable
applications, and are especially critical in server-side Java applica-
tions.Writing multithreaded Java is complicated, even for experi-
enced developers.

Errors in multithreaded programs
may not be easy to reproduce. The pro-
gram may deadlock or encounter other
thread-related errors under only very
specific circumstances, or may behave
differently when running different VMs.

If you use multithreading in your
client- or server-side Java, you should
seriously consider a detection solution
for the most common problems with
threaded programming, including:
• Deadlocks
• Potential Deadlocks
• Data Races

Deadlocks
A deadlock is a situation where

threads are blocked because one or both
are waiting for access to a resource that
will not be freed. The application can
never terminate because the threads are
blocked indefinitely.

This behavior results from improper
use of the synchronized keyword to
manage thread interaction with specific
objects. The synchronized keyword
ensures that only one thread is permit-
ted to execute a given block of code at a
time. A thread must therefore have
exclusive access to the class or variable
before it can proceed. When it accesses
the object, the thread locks the object,
and the lock causes other threads that
want to access that object to be blocked
until the first thread releases the lock.

Since this is the case, by using the
synchronized keyword you can easily be
caught in a situation where two threads
are waiting for each other to do some-

thing.
A classic example for a deadlock situ-

ation is shown in Listing 1. Now consid-
er this situation:
• One thread (Thread A) calls

method1()
• It then synchronizes on lock_1, but

may be preempted at that point.
• The preemption allows another

thread (Thread B) to execute.
• Thread B calls method2().
• It then acquires lock_2, and moves on

to acquire lock_1, but can’t because
Thread A has lock_1.

• Thread B is now blocked, waiting for
lock_1 to become available.

• Thread A can now resume, and tries to
acquire lock_2. It can’t because
Thread B has acquired it already.

• Thread A and Thread B are blocked.
The program deadlocks.

Of course, most deadlocks won’t be
quite so obvious simply from reading
the source code, especially if you have a
large multithreaded program. A good
thread analysis tool, like Sitraka’s JProbe
Threadalyzer, finds deadlocks and
points out their location in the source
code so that you can fix them.

Potential Deadlocks
Potential deadlocks are caused by

problematic coding styles that might
not cause a deadlock in every test execu-
tion. For that reason, they are perhaps
more dangerous than deadlocks, as they
may remain hidden until after the appli-
cation is deployed. We’ll discuss two

types of potential deadlocks: Lock Order
and Hold While Waiting.

Lock Order
Lock order violations can occur

when concurrent threads need to hold
two locks at the same time. The poten-
tial for deadlock develops when one
thread holds a lock needed by another.
Consider the situation where Threads A
and B both need to hold locks 1 and 2 at
the same time.

It is possible that events could unfold
as follows:
• Thread A acquires lock_1.
• Thread A is preempted and the VM

scheduler switches to Thread B.
• Thread B acquires lock_2.
• Thread B is preempted and the VM

scheduler switches to Thread A.
• Thread A attempts to acquire lock_2

but is blocked because lock_2 is held
by Thread B.

• The scheduler switches to Thread B.
• Thread B attempts to acquire lock_1

but is blocked because lock_1 is held
by Thread A.

• Threads A and B are now deadlocked.

It’s important to note that this dead-
lock might not occur in some situa-
tions. The VM scheduler might allow
one of the threads to acquire lock_1
and lock_2 in succession, without pre-
empting the thread. In such a case, reg-
ular deadlock detection would not
report it.

A fully featured thread analysis tool
would track the order in which locks are

J2
SE

H
om

e
J2

E
E

J2
M

E

How to handle deadlocks and data races

acquired, and warn of any problematic
lock ordering. A lock order analysis fea-
ture should issue warnings whenever
the VM scheduler might deadlock, while
deadlock detection should report only
actual deadlocks.

Hold While Waiting
Another type of potential deadlock

occurs when a thread holds a lock while
waiting for notification from another
thread. Consider the example shown in
Listing 2.

This code is problematic in that
Consumer can hold the lock on the
queue, denying Pro-
ducer the access it
needs. This can occur
even if Consumer is
waiting for Producer
to send notification
that another item has
been added to the
queue. Since Pro-
ducer can’t add items
to the queue, and
Consumer is waiting
on Producer for new
items to process, the
program is effectively
deadlocked.

Locks held while waiting are only
potential deadlocks because events
could transpire in such a way that the
notifying thread does not need the lock
held by the waiting thread. However,
such programming practice is risky
unless you are absolutely sure that the
notifying thread will never need the lock.
Locks held while waiting can also cause
cascading stalls, where one thread idles
while holding a lock needed by another
thread, which in turn holds a lock need-
ed by yet another thread, and so on.

To correct the previous example,
modify the Consumer class by moving
wait() outside of synchronized(), as fol-
lows:

public class Consumer

{

synchronized void consume()

{

while (! done) {

wait();

synchronized(queueLock_) {

removeItemFromQueue

AndProcessIt();

}

}

}

}

Data Races
A data race results from a lack of

synchronization or the improper use of

synchronization when accessing
shared resources such as variables.
Data races occur when the developer
fails to specify which thread has access
to a variable at a given time. In such a
case, whichever thread wins the race
gets access to the data, with unpre-
dictable results.

Because threads can be preempted
at any time, you can’t safely assume that
a thread executing at start-up will have
accessed the data it needs before other
threads begin to run. As well, the order
in which threads are executed may differ
from one VM to the next, making it

impossible to determine a standard suc-
cession of events.

Sometimes, data races may be
insignificant in the outcome of the pro-
gram, but more often than not they can
lead to unexpected results that are hard
to debug. In short, data races are con-
currency problems waiting to rear their
ugly heads. A good thread analysis tool
will identify any data race it encounters
while executing your program, and flag
it for you to fix.

A Benign Data Race
Not all race conditions are errors.

Consider the example in Listing 3.
Assuming that getHouse() returns

the same house to both threads, you
might conclude that a race condition is
developing because the BrickLayer is
reading from House.foundationReady_
and the FoundationPourer is writing to
House.foundationReady_.

However, the Java VM specification dic-
tates that Boolean values are read and writ-
ten atomically, meaning that the VM can’t
interrupt a thread in the middle of a read or
write, and that once the value has been
changed, it’s never changed back. This is a
benign data race, and the code is safe.

A Malignant Data Race
Now, consider the following scenario

in Listing 4.
What happens if a wife and husband

simultaneously attempt to deposit
money to a joint account, from two dif-
ferent banking machines? Let’s call them
Alice and Bob. At the beginning of our
scenario, their joint account has $100.

Alice deposits $25. Her banking
machine starts to execute deposit(). It
gets the current balance ($100), and
stores that in a temporary local variable.
It then adds $25 to that balance, and the
temporary variable holds $125. Then,
before it can call setBalance(), the
thread scheduler interrupts her thread.

Bob deposits $50. While Alice’s thread
is still in limbo, his thread starts to execute

deposit(). The get-
Balance() returns $100
(remember, Alice's
thread hasn’t written the
updated balance yet),
and the thread adds $50
to obtain a value (in its
temporary local vari-
able) of $150. Then,
before it can call set-
Balance(), Bob’s thread
is interrupted.

Alice’s thread now
resumes, and writes its
temporary local vari-
able’s contents ($125)

to the balance. The banking machine
informs Alice that the transaction is
complete. Bob’s thread resumes, and
writes the contents of its temporary
local variable ($150) to the balance. The
banking machine informs Bob that the
transaction is complete.

Net effect? The system has lost Alice’s
deposit.

Your first instinct might be to protect
the Account.balance_ field by making
getBalance() and setBalance() synchro-
nized methods. This will not solve the
problem. The synchronized keyword
will ensure that only one thread can exe-
cute getBalance() or setBalance() at a
time, but that won’t prevent one thread
from modifying the balance of an
account while the other is halfway
through a deposit.

How to Fix the Race
The key to successful use of the syn-

chronized keyword is to realize that you
need to protect entire transactions from
interference by other threads, not just
single points of data access.

In our example, the developer must
ensure that once a thread has obtained
the current balance no other thread
can alter that balance until the first
thread has finished using that value.
This can be accomplished by making
deposit() and withdraw() synchronized
methods.

T I P S & T E C H N I Q U E S
J2

SE
H

om
e

J2
E

E
J2

M
E

Java COM

38 SEPTEMBER 2001

Writing multithreaded
Java is complicated,
even for experienced

developers

“
”

AUTHOR BIO
Mark Dykstra is

Web content
manager at Sitraka

and has been
working as a Web

developer and
technical writer for
the past five years.

The Synchronized Keyword
Deadlocks, potential deadlocks, and

data races are common multithreading
errors made by developers of all levels
of experience. The correct use of the
synchronized keyword is essential to
writing scalable, multithreaded Java
code. A good thread analysis tool like
Sitraka’s JProbe Threadalyzer makes
error detection much less laborious
and is particularly valuable for finding
problems that might not arise in every
test execution.

This article is meant to be an intro-
duction to the most common Java multi-
threading development errors. For more
information on concurrent program-
ming, refer to the References. Christian
Jaekl was particularly helpful and I am
grateful for his support and advice.

References
1. Jaekl, C. (1996). “Event-Predicate

Detection in the Debugging of
Distributed Applications,” University
of Waterloo. www.sitraka.com/

jaekl96eventpredicate.pdf
2. Lea, D. (1999). Concurrent

Programming in Java: Design
Principles and Patterns, 2nd Edition,
The Java Series.

3. Oaks, S., and Wong, H. (1999). Java
Threads, 2nd Edition, O’Reilly.

4. Hartleys, S. (1998). Concurrent
Programming: The Java Programming
Language, 1998. Oxford University
Press.

T I P S & T E C H N I Q U E S

Java COM

40 SEPTEMBER 2001

class Deadlocker
{

int field_1; private Object lock_1 = new int[1];
int field_2; private Object lock_2 = new int[1];
public void method1(int value)

{ synchronized(lock_1)
{ synchronized(lock_2)

{
field_1 = 0;
field_2 = 0;

}
}

}
public void method2(int value)

{ synchronized(lock_2)
{ synchronized(lock_1)

{
field_1 = 0;
field_2 = 0;

}
}

}
}

public class queue {
static java.lang.Object queueLock_;
Producer producer_;
Consumer consumer_;

public class Producer
{

void produce()
{

while (! done) {
synchronized (queueLock_) {

produceItemAndAddItToQueue();
synchronized (consumer_) {

consumer_.notify();

}
}

}
}

public class Consumer
{

consume()
{

while (! done) {
synchronized (queueLock_) {

synchronized (consumer_) {
consumer_.wait();

}
removeItemFromQueueAndProcessIt();

}
}

}
}

}

public class House {
public volatile boolean foundationReady_ = false;

}

public class FoundationPourer extends Thread {
public void run() {

House a = getHouse();

// lay the foundation...

a.foundationReady_ = true;
}

}

public class BrickLayer extends Thread {
public void run() {

House a = getHouse();

//Wait until the foundation is ready
//NB: This is a "busy wait", and is the *WRONG* way to
//do this; we should use wait() and
//Object.notify() instead.

while (!a.foundationReady_) {
try {

Thread.sleep(500);
}

catch (Exception e) {
System.err.println

("Caught exception: "+e);
}

}
}

}

public class Account {
private int balance_; // amount of money in the account, in cents

public int getBalance(void) {
return balance_;

}
public void setBalance(int setting) {

balance_ = setting;
}

}

public class CustomerInfo {
private int numAccounts_;
private Account[] accounts_;

public void withdraw(int accountNumber, int amount)
{

int temp = accounts_[accountNumber].getBalance();
temp = temp - amount;
accounts_[accountNumber].setBalance(temp);

}

public void deposit(int accountNumber, int amount)
{

int temp = accounts_[accountNumber].getBalance();
temp = temp + amount;
accounts_[accountNumber].setBalance(temp);

}
}

Listing 4

Listing 3

Listing 2

Listing 1

J2
SE

H
om

e
J2

E
E

J2
M

E

mad@sitraka.com

42 SEPTEMBER 2001

Sometimes finding hosting for your
well-crafted pieces of code can be more
work than the coding itself. Locating a

service that does it free of charge is a real chal-
lenge; however, www.mycgiserver.com is a
service that meets both criteria. The site start-
ed life as a CGI server that could run user’s
Perl scripts, PHP, and Java servlets, but in
November 2000 they made the decision to
concentrate on Java deployment.

There are other providers of free server space
to run your Java Web applications, such as
iSavvix (www.isavvix.com) or WebApp

Cabaret (www.webappcabaret.com),
so it is advisable to check all of them
and see which will fulfill your
requirements.

Many free services on the
Internet contain banner adver-
tising to fund the service. The
only banner ads on www.
mycgiserver.com are on their
own home page and in the
member’s area pages. At pres-
ent there are no banner ads on
the Web space viewed by the
public.

The servlet container
used, Caucho Resin, is an
open-source servlet engine.
It also handles the JSP and
XTP calls; being a Jakarta
Tomcat user for so long I’m
looking forward to researching and
using Resin for my local development.
We’re not limited to servlets, JSP is also
available, and for the data hungry
there’s InstantDB and Hypersonic SQL
on the site. Access to an SMTP server
and an RMI registry is also available.

Registration is all done online. Once
registration details have been processed
and you have replied to your confirma-
tion e-mail, 5MB of server space is allo-
cated. There is the option to be e-mailed
at regular intervals to be told of upgrades
(EJB is coming soon, plus plans for
domain and subdomain hosting).

The members area gives information on
the amount of space you have used, a brief

rundown of the mappings to different file
types (servlets, JSP, XML, XTP, and so on), the

all important FAQ, and a list of installed com-
ponents covering XML parsing, e-mail, regular
expressions, and cryptography. Also available
within the member’s area is a Java compiler
(JDK 1.3), so if you upload a Java source file to
your area you can compile without having to
do it on a local machine first. There is an option
to password areas of registered Web space with
“.htaccess”, and a “htpasswd” program is avail-
able online to generate the passwords.

From a development point of view, all
servlets created are
contained as a pack-
age. It’s important to
note because if you
don’t declare any pack-
age information, the
servlets won’t run. As
everyone shares the
servlet engine, you
have to declare that the
servlet belongs to you
(see Listing 1).

When users run the
servlet, they would visit
w w w. m y c g i s e r v e r.

com/servlet/fictionusername.TestServlet.
Servlets can run from any directory, but you

must remember to adjust the package name
accordingly in order for the servlet to work. For
people new to the servlet and JSP programming,
there are sample files for you to look at within
your personal server space. There is also a dis-
cussion board, so you can post questions or pro-
vide answers to those in need or distress. This
makes up for the lack of formal documentation
and the depth of information within the FAQs.

There are a couple of minor problems with
the service, the first being you can’t keep all
your servlet classes in one .jar file. The other is
the online documentation. What I would like
to see are pages for setting up the add-on
components, such as InstantDB and Xerces,
and using the RMI registry. For example, I had
to download InstantDB onto my development
machine and figure out how it works, then
transfer that knowledge to my server account.
My concerns are for new Java programmers
who want to develop and learn. Our aim
should be to encourage not discourage.

I use the service as a test bed and alternative
Web space, and is something I’m looking to
develop more. For those who don’t need the
complexity of JRun or WebLogic, I would
encourage you to look at www.mycgiserver.com.
The only cost is your time and effort.

mycgiserver
Web: www.mycgiserver.com
E-mail: general@mycgiserver.com

info

S E R V I C E R E V I E W
J2

SE
H

om
e

J2
E

E
J2

M
E

package fictionusername;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class TestServlet extends httpServlet {
public void doGet(httpServletRequest req, HttpServletResponse
res)

throws IOException, ServletException {

// body of code continues...

}
}

Listing 1 TestServlet.java

Java COM

my
cgi

ser
ver

Hosted by
netarray

REVIEWED BY JASON BELL

jason@jflight.net

Java COM

44 SEPTEMBER 2001

Design Patterns for Optimizing the
Performance of J2EE Applications

R E U S A B L E D E S I G N S

WRITTEN BY
VIJAY S.

RAMACHANDRAN

With the proliferation of J2EE as the platform of choice for server-side appli-
cations, the need for sharing developers’ experiences and the availability of reusable
designs has become crucial.

In this article, we get to know some of
the reusable designs that can be used to
improve the performance of a J2EE
application. For the benefit of those
who are not familiar with design pat-
terns, a brief description is given at the
beginning before delving into the
details. For further details on design
patterns, see the reference section at
the end of this article.

What Are Design Patterns?
As software developers design and

build different applications, we come
across the same or similar problem
domains. This leads us to find a solution
for the same/similar problem every-
time, and we end up “reinventing the
wheel” again and again. It would be
helpful to have a repository that discuss-
es such common problem domains and
proven solutions. It would be much bet-
ter if such a repository discussed the
problem domains, along with a solution
best suited to solve the problem on
hand. Such a solution could be the result
of the hands-on experience of the devel-
opment community.

In the simplest terms, such a com-
mon solution is a design pattern and
the repository or place of reference
that contains such patterns is a design-
pattern catalog. A design pattern pre-
scribes a proven solution from experi-
enced hands for a recurring design
problem. Apart from describing the
problem and prescribing the solution,
the pattern will also explain the imple-
mentation issues involved and conse-
quences, if any, of using the pattern.
These solutions are generic in nature.
They are described in the well-defined
“Pattern Templates”; the most com-
mon one in use is the template defined
by the “Gang of Four.” The pattern tem-

plates usually have a name that offers a
good idea as to what that pattern is all
about, followed by where the pattern is
applicable, the motivation, implemen-
tation issues, and other descriptions.

Use of such patterns makes the
design of an application transparent.
These patterns have been used suc-
cessfully by developers in their respec-
tive work and hence the pros and cons
of their use as well as implementation
issues are known beforehand. All
design patterns are reusable and can
be adapted to a particular context; this
gives developers flexibility. The use of
design patterns related to J2EE appli-
cations offer the added advantage of
providing solutions for J2EE platform
technologies.

Performance-Optimizing Design Patterns
For J2EE Applications

This article does not explain the
patterns with their formal template
and a full-blown code sample. The
“J2EE Blueprints” link in the reference
section will be the place of reference
for those interested in such details.
Instead we look into some recurring
problem domains that have a tremen-
dous effect on the performance of a
J2EE application. We also look into a
working solution for each of the prob-
lem domains that we discuss, along
with some important points to note
and small code samples wherever
applicable.

Multitiered J2EE applications consist
of components communicating across
tiers to access/change data. This often
leads to remote calls between applica-
tion clients/JSPs/servlets and EJBs or
between EJBs. Such remote calls are
costly and affect the performance of the
application as a whole. An increase in

the number of such remote calls in-
creases network traffic too. Moreover,
for all the advantages that EJBs offer,
they come with a small price. The fol-
lowing three design patterns suggest
good solutions to minimize some of the
performance costs in typical J2EE appli-
cations.

Fast Lane Reader
Problem Domain

Most Web applications need to dis-
play a list of data objects to the user. A
financial service organization that offers
its service over the Web will have to dis-
play its catalog of services to the cus-
tomer who is visiting its Web site. An
online banking application will have to
display a list of recent transactions of a
customer who is checking his or her
account. If an organization has an inter-
nal Web application that allows its
employees to enroll for benefits over its
intranet, the application should display
a list of benefits available to an enquir-
ing employee.

Let’s start with the financial organi-
zation’s scenario. To display the catalog
of services, typical designs might have
an EJB that represents the whole cata-
log. There might be a CatalogEJB that
implements all required business logic
related to the catalog, such as adding a
new service, removing an existing serv-
ice or giving a list of service, details to
the requesting components. In the case
of other components requesting a list
of service details, the requesting com-
ponent will have to get a reference to
the CatalogEJB, access the EJB’s remote
method that gets the list of services,
and then displays (see Listing 1, which
assumes the servlet is the client).

This implementation method, while
providing transactional access for the

J2
SE

H
om

e
J2

E
E

J2
M

E

Stop reinventing the wheel

46 SEPTEMBER 2001

J2
SE

H
om

e
J2

E
E

J2
M

E

required list of objects, comes with the
price of the overheads and remote calls
associated with the use of the EJB.
Given that the list of services is not
going to change every second, the
chances of the customer seeing stale
data are low. So do we have to choose
transactional access through the EJB
and pay the associated price? Extending
the same argument to the other exam-
ples, given that the bank customer’s list
of transactions does not change every
second, do we have to have transaction-
al access for listing the transactions?
And given that the list of benefits given
by the employer does not change every
day, do we need transactional access to
display the list of benefits to enquiring
employees?

Suggested Pattern
The main issue to be addressed

here is whether we should choose
transactional access while reading a
set of data that does not change rapid-
ly. In such scenarios, the suggested
pattern would be the Fast Lane Reader.
Note that the problem domain that
was described requires only read
access to a set of data that does not
change rapidly. We can opt to take the
fast lane and read the data directly
rather than opting for transactional
access through EJBs. In the scenarios
described in the previous section, the
Fast Lane Reader will be a more effi-
cient way to access data. Such a tech-
nique will also give a faster response to
the customer while running a very
small risk of displaying stale data. By
bypassing the EJB the overheads asso-
ciated with remote calls, transaction
management, and other issues are
avoided.

Again taking the financial services
scenario and the sample code explained
in Listing 1, one way to implement this
pattern would be to have a separate
object, the Data Access Object, which
encapsulates all data read and update
functionality of the CatalogEJB (see
Listing 2).

A servlet client that uses the Fast
Lane Reader pattern will use the Data
Access Object directly to read the list of
services and display the list as shown in
Listing 3.

Since we now have a Data Access
Object that encapsulates all access to
the catalog, the business methods of the
CatalogEJB (like updateServices, add-
Services, etc.) can use the correspon-
ding methods in Data Access Object to
avoid duplication of code.

Comparing Listings 1 and 3, we can
see how the servlet bypasses the EJB by

accessing the Data Access Object
directly to get the list of services from
the Catalog. This method of implemen-
tation, while allowing the client to use
the fast lane for direct access of data,
will also allow the EJBs to provide
transactional updates to the same data.
Note that encapsulating all types of
data access will also enable the EJB to
use the same Data Access Object for
updating the same table. This has the
added advantage of avoiding code
duplication.

Points to Note
• This pattern is good for faster and

more efficient data retrieval only.
• There is a risk of the data being stale

and hence this pattern should not be
used when the data being accessed
changes rapidly or when the tolerance
for slightly stale data is very small.

• Because this pattern bypasses the EJB
model and provides direct access for
persistent data, the design of the
application may become complex for
large-scale applications.

• As the pattern name suggests, this
pattern is ideal for data read. For
updating the data, this pattern should
not be used as transactional access is
bypassed.

Page-by-Page Iterator
Problem Domain

Now that we have seen an efficient
way to access read-only data (that does
not change rapidly), how much of such
data should we read? To put it in a more
general way, when we have to access a
large remote list of objects, do we trans-
fer the entire list or only part of it? The
answer to this question will have a
tremendous performance effect on the
application because transfer of large
lists means extra load on the network.
Moreover, if EJBs were used to read such
large lists, the performance cost is even
more because of the costs introduced by
the additional services provided by the
EJB model.

To take a concrete example, let us
revisit the financial services example
that we saw in the previous pattern. Let
us assume that the list of services is
large. We already saw how we can use
the Fast Lane Reader pattern to avoid
the overheads associated with EJBs.
But, since the list is large, do we trans-
fer the entire list to the requesting
client every time? Do we have to stress
the network every time a client
requests the list of services? If we trans-
fer the entire list every time, do all
clients have the capacity to handle
such large lists?

Suggested Pattern
In finding a common and efficient

solution, we should note that the user
may not be interested in looking at the
entire list. The transfer of large lists
means more time, resulting in bad
user experience. Moreover, the re-
questing client may have a small
amount of memory or a small display;
hence, such a client may not be able to
handle such large lists. Taking these
into account, the suggested pattern
would be the Page-by-Page Iterator
pattern. The use of this pattern will
enable the client to request the list and
also specify its size. In response, the
server will return a list of the request-
ed size only.

Going back to the example we saw
in the previous pattern, implementa-
tion of this example will require the
getServiceNames() method of Data
Access Object (see Listing 2) to take two
arguments, namely the size of the list
and the starting index. With these, it
will create a collection of the
required number of objects and
return it as part of a “Page-by-
Page Iterator.” Listing 4 shows
sample code for the Page-by-
Page Iterator pattern. The
information on the starting
index and list size is passed to
the iterator by the invoking
client component.

The Data Access Object will
have to be modified a little to
make use of the Page-by-Page
Iterator pattern while returning the
list of services.

The code for other methods, except
getServiceNames(), is the same as
that in Listing 2.
We see the steps
that will be done
in the getSer-
viceNames()
m e t h o d
i n s t e a d
of going
into de-
t a i l e d
code.
These
changes
will allow
the client who
uses the Fast
Lane Reader pat-
tern and the Page-
by-Page Iterator
pattern to get the list
of services of the
required size. The
arguments are used while deciding
how many objects to return as part

Java COM

47SEPTEMBER 2001

R E U S A B L E D E S I G N S

of the collection (see Listing 5). And the servlet
client that gets and displays the list would look
like Listing 6.

Points to Note
• Clients can specify the list size so they control

the amount of data they want to receive. This
gives them more flexibility.

• While this pattern provides efficient access to
large server-side lists, the number of server
hits might increase a bit as not all data is
transferred at once.

• The iterator does not keep its own copy of the
list being traversed. As a consequence, inser-
tions or removals will interfere with the tra-
versal. But this may not be a problem if the
client browses static data collections like list
of services or search results.

• Network bandwidth is not wasted by trans-
mitting unused data. This has to be weighed
against the potential increase in number of
server hits while deciding whether to use this
pattern.

Value Object
Problem Domain

So far we have seen two patterns that
could improve the efficiency and per-
formance of our J2EE application when
large amounts of objects are being trans-
ferred between clients and server. All will
be well if the actual objects that are being
transferred have no attributes. But more

often than not, the data being transferred
are collections of objects that have their

own identity. In the financial services sample
application that we have been discussing,
the list of services being returned from the
server are actually collections of objects.
Each of these services will have its own
attributes, such as Service Name, Service

Cost, Service Description, and
Terms and Conditions. And,
more often than not, a client

requesting the list of services
will also want to know

about all the above men-
tioned information that

belongs to a service.
Given these circum-

stances, when do we
transfer these finer

details? It is definitely not
efficient for the client to
get a list of service names

and then contact the serv-
er to get the finer details of

each service name received.
That would entail lots of
remote calls and additional
stress on the network.

Suggested Pattern
While coming up with a common

solution to this scenario, we have to keep in
mind that:

• The probability of the client asking for the
finer details of a service is much more than
the client asking for the complete list of ser-
vices.

• All the attributes associated with the request-
ed object will most probably be in the same
database table and hence can be obtained in
the same SQL call that gets the list of service
names.

The suggested solution would be that we
transfer coarse-grained data (in this example,
the list of service names along with all its attri-
butes) rather than transferring fine-grained data
(e.g., requiring the client to make separate
remote calls for each of the attributes, such as
service name, cost, and terms). We can do this
by using the Value Object pattern. Use of this
pattern in our sample case will result in the
ServiceDataAccessObject aggregating each ser-
vice and all its attributes into one instance of a
Value Object, say ServiceInformation. Then a
collection of these Value Objects is serialized
and sent over the wire to the client where it will
be deserialized and used.

To see some code examples, let us first define
the ServiceInformation Value Object (see Listing 7).

Now for the rest of the code: the iterator pat-
tern will be the same as that in Listing 4, without
any change. The data access object will also be
the same as in Listing 5. The Data Access Object
will set the iterator’s collection as a set of value
objects and the servlet will retrieve the attribute
information from value objects and use it for
display. The code of the servlet client that gets
the value objects and displays the values would
look like Listing 8.

Points to Note
• Use of this pattern reduces network traffic

and improves response time for coarse-
grained, read-only data.

• To further improve perfomance, the value
objects can be cached.

• Use of this pattern also reduces the hits on
server as the number of remote calls made by
clients is reduced.

• The extra classes that represent various
objects and attributes as Value Objects may
add to complexity but this is a small price to
pay when we consider the advantages of
using this pattern.

• The Value Objects must be serializable and
immutable. If clients have the capability to
modify the Value Objects, then the state of
the objects with the client and that with the
server differ, leading to inaccurate states. But
the consequence of making the Value
Objects immutable is that, if the data
changes rapidly, the values in the Value
Object might be stale

• Although, in the sample code, we saw the
Value Objects being used for transferring
information from server to client(s), this pat-
tern can be used for data transfer in the
reverse direction also.

Java COM

48 SEPTEMBER 2001

Conclusion
In this article we saw three different

patterns that we can use effectively to
improve the efficiency, performance,
and user experience of a J2EE applica-
tion. The samples we saw to exemplify
the use of the patterns seems to com-
bine use of all three. But we must
understand that there is no need to use
all these three patterns together. For
example:
• We can use the Value Object to send a

single coarse-grained object (like con-
tact information of a customer) from
the server to the client(s).

• We can use the Page-by-Page Iterator
to send lists of simple objects from
EJBs to clients.

• We can use the Fast Lane Reader to
read data from the server and display
all of them in one shot.

The sample code we saw was also
incomplete. The intention was just to
give you an idea of what we are talking
about. The Java Pet Store sample ap-
plication and the patterns catalog of
the J2EE Blueprints program provide
formal definitions of the patterns we
discussed along with full-blown, work-
ing sample code, UML diagrams, and
other helpful information. Interested
readers may find more detailed infor-
mation on the Web site, http://java.-
sun.com/j2ee/blueprints. The next ver-
sion of Enterprise JavaBeans (EJB 2.0)
removes some of the overheads associ-
ated with remote calls by introducing
the concept of “local interfaces.” In a
future article, we can discuss the effect
of such a feature on these patterns.

References
1. Design Patterns section of the J2EE

Blueprints Program: http://java.sun.
com/j2ee/blueprints

2. Buschmann, F., Meunier, R., Rohnert,
H., Sommerlad, P., and Stal, M. (1996).
Pattern-Oriented Software Architec-
ture: A System of Patterns. John Wiley
& Sons Ltd.

3. M. Fowler's Information System Archi-
tecture: http://martinfowler.com/isa/
index.html

4. Gamma, E., Helm, R., Johnson, R.,
and Vlissides, J. (1995). Design
Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

5. “Gang of Four” Patterns Template:
http://hillside.net/patterns/Writing/
GOFtempl.html

R E U S A B L E D E S I G N S
J2

SE
H

om
e

J2
E

E
J2

M
E

AUTHOR BIO
Vijay

Ramachandran, a
member of the J2EE
Blueprints team for
Sun Microsystems,
contributed to the

recent Java Pet Store
sample application.

He’s currently
focusing on the Web
services features of

forthcoming J2EE
releases.

EMAIL:

// All required imports

public class DisplayServices extends HttpServlet {

// variable declarations

public void init() {
// all inits required

}

public void doPost(HttpServletRequest request, HttpServletResponse
response)

throws IOException, ServletException {

// other processing, if any

InitialContext ctxt = new InitialContext();
Object obj = ctxt.lookup("java:comp/env/ejb/Catalog/Services");
CatalogHome catHome = (CatalogHome)

PortableRemoteObject.narrow(obj, CatalogHome.class);
Catalog catList = catHome.create();
Collection list = catList.getServiceNames();
while(int i=0; i < list.size(); i++) {

// get the service name

// display the service name received

}
// do other processing required

}
// other methods definitions

}

// The following is the sample code of the CatalogEJB
// For simplicity sake, the definitions of the home and remote
// interfaces are not shown

// All required imports

public class CatalogEJB implements EntityBean {

// Methods like ejbCreate etc go here

// Business methods start here
public Collection getServiceNames() {

// Access the database and get the list of service names
// Form a collection of the service names
// Return this collection

}

public int updateServices(arg1, arg2) {
// this method will allow the CatalogEJB to update the list of

Services;
// for example, this method might build the SQL query for updating

the
// list services in the catalog and use JDBC to execute the query

}

public int addServices(arg1, arg2) {
// this method will allow the CatalogEJB to add to the list of

Services
}

// Other business methods
}

// all required imports

public class CatalogDataAccessObject {

private Connection dbConnection;
private DataSource datasource;

public CatalogDataAccessObject() {

// appropriate exceptions to be caught
InitialContext ic = new InitialContext();
datasource = (DataSource)

ic.lookup("java:comp/env/jdbc/CatalogDataSource");
dbConnection = datasource.getConnection();

}

public int updateServices(arg1, arg2) {
// this method will allow the CatalogEJB to update the list of

Services;
// for example, this method might build the SQL query for updating

the
// list services in the catalog and use JDBC to execute the query

}

public int addServices(arg1, arg2) {
// this method will allow the CatalogEJB to add to the list of

Services
}

public Collection getServiceNames() {
// this method will allow the catalogEJB or any client

using Fast Lane

Listing 2: Data Access Object that encapsulates all types of access to the Catalog

Listing 1: Servlet that uses a CatalogEJB to read a list of objects

vijay.ramachandran@sun.com

Java COM

51SEPTEMBER 2001

Java COM

J2SE
H

om
e

J2E
E

J2M
E

// Reader pattern to get the list of services
}

// other method definitions as required
}

// All required imports

public class DisplayServices extends HttpServlet {

private CatalogDataAccessObject dao;
// other declarations

public void init() {
CatalogDataAccessObject dao = new

CatalogDataAccessObject();

// all other inits required
}

public void doPost(HttpServletRequest reqest,
HttpServletResponse response)

throws IOException, ServletException {

// other processing, if any

Collection list = dao.getServiceNames();
for(int i=0; i<list.size(); list++) {

// get the service name received
// display the list name

}

// do other processing as required
}

// other method definitions, if any
}

// all required imports

public class PageByPageIteratorImpl {

/*
"start" represents the starting index of the first element of this

sublist.
*/

private int start;

/*
"size" represents the number of elements that are in this sublist.
*/

private int size;

/*
"totalCount" represents the total number of objects that would

have been
returned in the absence of the Page-By-Page Iterator; very useful

information
for the clients in deciding to iterate more or not
*/

private int totalCount;

/*
"objs" has the actual collection of objects
*/

private Collection objs;

public PageByPageIteratorImpl(int start, int size, int total,
Collection

coll) {
this.start = start;
this.size = size;
this.totalCount = total;
this.objs = coll;

}

public int getStartIndex() {
return start;

}

// Other similar accessor methods for size, totalCount, objs
}

public PageByPageIteratorImpl getServiceNames(int startIndex,
int size) {

// get the total count of the number of service into
variable "total";

// access the database and get the collection of service
names in

// "retObjs";
// the collection obtained will be of requested size only

starting from
// the index specified;
// return the collection of service names as part of the

Page-by-Page Iterator
return(new PageByPageInteratorImpl(startIndex, size,

total, retObjs));
}
// other method definitions as required

}

// All required imports

public class DisplayServices extends HttpServlet {

private CatalogDataAccessObject dao;
// other declarations

public void init() {
CatalogDataAccessObject dao = new

CatalogDataAccessObject();
// all other inits required

}

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {
// other processing, if any
Integer startIndex = new

Integer(request.getParameter("StartIndex"));
Integer listSize = new

Integer(request.getParameter("ListSize"));
PageByPageIteratorImpl list =

dao.getServiceNames(startIndex.intValue(),
listSize.

intValue());
Collection objs = list.getCollection();
// Now the list received is of requested size only
// iterate thro the list and display the service names

received
// do other processing as required

}
// other method definitions

}

// all imports required

public class ServiceInformation implements java.io.Serializable {

private String serviceName;
private double serviceCost;
private String[] serviceTerms;
// other attributes of a service

public ServiceInformation(String name, double cost, String[]
terms) {

serviceName = name;
serviceCost = cost;
serviceTerms = terms;

}

public String getName() {
return(serviceName);

}

public double getCost() {
return(serviceCost);

}

public String[] getTerms() {
return(serviceTerms);

}
// similar accessor methods for other attributes

}

// All required imports

public class DisplayServices extends HttpServlet {

private CatalogDataAccessObject dao;
// other declarations

public void init() {
CatalogDataAccessObject dao = new

CatalogDataAccessObject();
// all other inits required

}

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {
// other processing, if any
Integer startIndex = new

Integer(request.getParameter("StartIndex"));
Integer listSize = new

Integer(request.getParameter("ListSize"));
PageByPageIteratorImpl list =

dao.getServiceNames(startIndex.intValue(),
listSize.intValue());

Collection objs = list.getCollection();
// The collection is a collection of the value objects
// Now the list received is of requested size only
// extract the service names and the attributes from the

value objects
// display everything and do other processing as required

}
// other method definitions

}

Listing 8: Using all these patterns discussed

Listing 7: Value Object class for a service

Listing 6: Servlet using Fast Lane Reader and Page-by-Page Iterator

Listing 5: Data Access Object

Listing 4: Page-by-Page Iterator pattern returned to the client

Listing 3: Servlet that uses Fast Lane Reader pattern

jeremy@sys-con.com

Anew business cycle is sweeping the
Internet technology world, one
that now demands that companies

start competing with each other, not only
for new customers, but also – and perhaps
even more crucially in a time of shrinking
revenues – to retain the ones they have.

In this new cycle Java as usual acts as a
focal point, because in such a phase the
overriding need is for an enterprise to con-
tradistinguish itself from its competitors,
and what better way to do so than by pro-
viding not just better customer support for
existing products or services (everyone
tries that), but also entirely new services.

This is, of course, more or less where
Java came into the Internet technology
arena in the first place. Developing a cus-
tomer-facing, product-support strategy is
one thing, but actually delivering a great
customer experience is another, and some
of the articles in this month’s J2SE section
directly address the bumps in the road
that lead to successful Java-based imple-
mentations.

José María Barrera looks at the best way
to use the Java reflection classes; Mark
Dykstra examines how to eliminate multi-
threaded errors; and Thomas Hammell
invites us to “drag-and-drop” into Java.
These writer-developers, and others like
them, are what make JDJ the leading print
and online resource for Java developers in
the new business cycle as in the old.

Getting the Edge on Web Services
One of the liveliest new e-business bat-

tlegrounds will undoubtedly be Web serv-
ices. Those of you reading this issue of JDJ
prior to the JDJEdge 2001 Conference &
Expo, which is being presented in New
York later this month by SYS-CON Events,
may already have made up your mind to
sample some of the sessions at the Web
Services Edge Conference & Expo that
SYS-CON is colocating with JDJEdge at the
New York Hilton.

If so, you’ll have the benefit of hearing
firsthand the views of those in the forefront
of the paradigm that promises to do for
distributed computing what Captain Cook
did for Botany Bay: put it on the map. If
not, try and come even if it’s only at the last
minute: there isn’t an event anywhere like
it on the East Coast. Web services will be
the theme of a keynote discussion panel
that the two conferences will be holding.

So if you’re wondering what James
Gosling thinks about it all, or what a Java-
based vendor such as PointBase is doing in
this “brave new Web services world”, or
where BEA Systems’ Scott Dietzen thinks
it’s all headed, try and make it to the N.Y.
Hilton, September 23–26.

While there, you’ll also have an oppor-
tunity to savor keynote addresses from
such luminaries as David Litwack, CEO of
SilverStream; Gregg Kiessling, cofounder
and CEO of Sitraka Software; Yogesh
Gupta, CTO of Computer Associates; and
Dr. Alan E. Baratz, CEO of Zaplet, Inc. –
which, at an event already offering Kevin
Lynch, president of products, Macromedia
Inc., and Rick Ross, president of the
54,000-strong Java Lobby, is quite a lineup.

If you haven’t had the pleasure of hearing
Sun’s James Gosling speak, remember that
he’s not only the “father of Java,” but has also
built satellite data-acquisition systems, a
multiprocessor version of UNIX, several
compilers, mail systems, window managers,
a WYSIWYG text editor, a constraint-based
drawing editor – and, oh, yes, the Emacs text
editor for UNIX systems. When it’s time for
audience questions, be sure to ask him just
what lies inside the cover of his PhD thesis,
“The Algebraic Manipulation of Constraints.”

For us mere mortals who never made it
to Stanford or Carnegie Mellon in the cru-
cial late ’70s when Internet technology
was in its incubation, JDJEdge 2001 prom-
ises to be a great eye-opener! These are
truly the Java movers and shakers, and I for
one wouldn’t miss it for the world.

J 2 S E E D I T O R I A LO RJ

Java COM

54 SEPTEMBER 2001

J2
SE

H
om

e
J2

E
E

J2
M

E

The New Cycle Arrives

J 2 S E I N D E XX

AUTHOR BIO
Jeremy Geelan, editorial director of SYS-CON Media, speaks, writes, and broadcasts frequently around the world about the future of Internet

technology and about the business strategies appropriate to the convergence of business, i-technology, and the future.

JEREMY GEELAN J2SE EDITOR

The New Cycle Arrives
One of the liveliest new e-busi-

ness battlegrounds will
undoubtebly be Web services.

by Jeremy Geelan

Product Review
Forte for Java by Sun

Microsystems
Reviewed by Jim Milbery

A Reusable Drag and
Drop Handler

Over the years drag-and-drop
has gone from a cool feature to

a required piece of most user
interfaces. In this article, the
author develops an abstract
DnDHandler class that takes

care of most of the tedium and
simplifies the implementation

of drag-and-drop.
by Thomas Hammell

Product Review
Jtest 4.0 by ParaSoft

Reviewed by Jim Milbery

Reflection Classes: What
Is Java Reflection?

The spirit and technical side of
this advanced Java feature

by José María Barrera

54

60

64

66

56

Java COM

56 SEPTEMBER 2001

In my opinion there have always been two
types of Java application developers. The
first type prefers to use a text editor, compil-

er, and debugger to get the job done. Once upon
a time, this was the only way to write code, from
COBOL and Fortran all the way through C. The

age of the fourth-generation language intro-
duced the concept of a specialized developer
“coding tool,” which we now refer to as an
integrated development environment (IDE).

The second type of programmer prefers to
use an IDE to develop Java code. There’s no
right or wrong way here – it’s all a matter of
preference. Initially, most of the Java IDEs
on the market supported the Windows
operating system as a development plat-
form, but newer Java IDEs are written in
Java. This makes them highly portable
from platform to platform. Sun offers its
own such IDE in the form of Forte for
Java. I recently looked at the Early
Access Edition of Forte for Java, 3.0
release, Enterprise Edition.

Forte for Java – Two Editions
Sun’s Forte for Java is based on two sets

of technology that Sun acquired, Forte
Software’s Forte and NetBeans’ NetBeans
Developer. Forte Software predates Java.
They were one of the first companies to
tackle the complex issue of distributed
application processing. NetBeans was a
Czech-based company that developed
one of the first IDEs written entirely in
Java. Sun acquired Forte Software for
Forte’s server-side technology and code-
generation expertise and they bought out
NetBeans for their Java IDE. Forte for Java –
or FFJ – is the resultant offspring of these
two exciting technologies.

FFJ traditionally comes in two versions,
the Community Edition and the Internet

Edition. The Community Edition is offered
free-of-charge on the Sun Web site and is

equipped with the complete IDE and a
built-in Web browser and Web server. You

can use this standard Java IDE to build Java
applets, Java clients, JavaBeans, and stand-
alone Java applications. The Enterprise
Edition is targeted at enterprise developers
and includes additional functionality such as
Tomcat integration, EJB development, and

database-aware components. The updated
release includes both the Community and
Internet Edition functionalities as well as new
functionality. FFJ Enterprise Edition comes
equipped with modules for EJB creation,
application server integration, and an enter-
prise services presentation toolkit.

Working with FFJ
The Forte for Java Enterprise Edition 3.0

release comes packaged in an installation wiz-
ard. The install process is relatively simple and I
was able to get the product up and running in a
few minutes. FFJ 3.0 has a plethora of features,
and it will take you awhile to get a handle on all
the ins-and-outs of this comprehensive tool set.

If you are coming to FFJ from another
graphical IDE environment, I suspect you’ll
find most of the panels and forms to be well
organized. However, if you’re coming from the
editor/compiler environment, be prepared to
be overwhelmed by the sheer number of choic-
es in the FFJ IDE. This is typical for most Java
IDEs. The theory is that the IDE is not really
useful unless it covers all possible bases. Java
continues to grow in scope and complexity,
and experienced Java developers won’t be sur-
prised by the complexity of the IDE environ-
ment. However, the number of switches and
knobs within the IDE might be overwhelming
for newly minted Java programmers.

The FFJ 3.0 release comes equipped with a
short tutorial and some limited sample code.

Sun Microsystems Inc.
901 San Antonio Road
Palo Alto, CA 94303
Web: www.sun.com/forte/ffj

Test Environment
Dell 410 Precision CPU
(450MHz), Windows NT
Workstation Service Pack 5,
256MB RAM

Specifications
Platforms: Solaris 8
Red Hat Linux 6.2
Windows 98 NT/2000
Pricing: Community Edition
freely downloadable.
Enterprise Edition is
$1,995/seat, 30-day trial is
freely downloadable.

specs

P R O D U C T R E V I E W

REVIEWED BY JIM MILBERY

jmilbery@kuromaku.com

J2
SE

H
om

e
J2

E
E

J2
M

E Forte
for Java
by Sun Microsystems

3.0

Java COM

58 SEPTEMBER 2001

P R O D U C T R E V I E W

For
te

for
 Ja

va
3.0

 by
 Su

n M
icro

sys
tem

s

If the sample projects don’t appeal to you, you can use FFJ
with your existing code. FFJ 3.0 can input projects from
other Java IDEs such as Microsoft J++, JBuilder, and
VisualCafé (WebGain). Thus I was able to grab an old
JBuilder project I had lying around and move it into FFJ
without much difficulty. It’s definitely a programmer’s
IDE. Developers not familiar with Java are likely to get lost
in an IDE that’s as comprehensive as FFJ. The product
includes numerous wizards for managing projects and
generating code, but you’d better be familiar with the
basics of Java before you dive into creating your own proj-
ects. (This is definitely a personal opinion and does not
reflect on the capabilities of FFJ.) The question for new
Java developers is whether a comprehensive IDE helps or
hurts their learning curve. Once you’re familiar with Java
(even to a limited degree) the value of a powerful IDE is
not open to questions.

Forte’s wizards include:
• JSP and servlet
• XML and DTD
• AWT forms
• Ant projects
• Beans
• CORBA
• Classes (applets, classes, etc.)
• Database (forms and database schema creation)
• Sample forms
• JAR packaging
• RMI
• Swing forms

FFJ uses the familiar “workspaces” and project con-
cepts, so it’s a simple process to organize your tasks and
work on multiple, independent projects at the same
time. You can organize the various task panels (as shown
in Figure 1) to match your own preferences, and dock
and undock windows as well. Through the Form Editor
you can design the graphical display and view/set prop-
erties in the Component Inspector, and modify the
resulting Java code in the Source Editor.

Although the FFJ environment is somewhat sluggish
from a GUI perspective, the source code editor has some

nice features, including syntax highlighting and
dynamic code completion. You can change the
fonts and colors to match your own personal
preferences. (Opinions vary on the utility of
code completion, but I make use of this feature
extensively when writing code.) Within the GUI
editing environment Forte provides a “connec-
tion capability” for generating code. For exam-
ple, you can add a button to control a chart
object by dropping the button on the form and
using the connection wizard to link the button
to the chart. Forte’s Connection Wizard walks
you through the process of selecting events and
generating the proper Java code. Sun provides a
valuable demonstration of these two features

(and more) on the Forte Web site, and I would encourage you
to take this short online tour.

When it’s time to test your code, the debugging workspace
comes into play. It’s nicely laid out and provides all the standard Java
debugger capabilities (including remote debugging and JPDA) – and
you can customize the debugger for your environment as needed.

One of the nicest features that I worked with is the Update
center (see Figure 2). It’s available to all registered Forte for Java
users and provides a library of updates and modules that can be
plugged directly into the FFJ IDE. These modules can include
everything from EJB builders to application server interfaces.
This is exactly the type of feature that leverages the power of the
Internet. Developers need not stuff their local machine with a
whole host of add-ons and features they don’t need. Rather, they
can connect to a central site and download functions as neces-
sary – making the Forte IDE highly extensible and customizable.

JDJ Product Snapshot
• Target audience: Java Developers
• Level: Mid-level to advanced
• Pros: Multiplatform support for IDE, extensibility of the IDE

and Web-based updates, integration with Sun ONE
• Cons: IDE tends to be sluggish, Java newbies may be over-

whelmed with all of the features

Summary
FFJ 3.0 is a strong offering in the Java IDE category. Its abil-

ity to run on multiple operating platforms and support
Internet-based updates will find favor with most Java develop-
ers. Java newbies may find the IDE slightly overwhelming, but
experienced Java developers will appreciate the wealth of fea-
tures and functions within FFJ.

FIGURE 1 The Forte for Java 3.0 IDE

FIGURE 2 FFJ Update Center

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

60 SEPTEMBER 2001

For a Java developer creating user
interfaces it’s no longer a question of
whether drag-and-drop should be used
but of how much. Java provides a set of
classes for implementing the drag-and-
drop interface. While it’s not overly com-
plex, implementing it in a complex GUI
with a number of drag sources and drop
targets can be tedious and error-prone.
In this article, I develop an abstract
DnDHandler class that takes care of
most of the tedium and simplifies the
implementation of drag-and-drop.

Drag-and-Drop Review
Although there are many parts to a

drag-and-drop transaction, it can basi-
cally be broken down into three main
components (see Figure 1):
1. Starting the drag where the drag

action is recognized by the compo-
nent

2. Converting the drag item into a trans-
ferable data type

3. Dropping the transferable data into
the drop target

During the drag-and-drop transaction
many other minor parts allow for user
feedback, but these won’t be discussed in
any detail in this article. For more infor-
mation on the details of drag-and-drop,
see the reference at the end of the article.

Consider the simple drag-and-drop
application shown in Figure 2 that con-
tains two components: a DraggableTree
on the left and a DroppableList on the
right. The user can select items from the
tree and drag them into the list.

The code for the DraggableTree is
shown in Listing 1 and the code for the
DroppableList is shown in Listing 2.
Listings 1–5 can be downloaded from
www.sys-con.com/java/sourcec.cfm.

To make the tree a draggable compo-
nent a number of things must be done.
First, the tree must implement the
DragGestureListener interface, then cre-
ate an instance of a DragSource and call
the createDefaultDragGestureRecognizer
method so that the tree will be notified
when a drag action has been initiated.

When a drag-and-drop action
occurs, the dragGestureRecognized
method is called. This method first
checks to see if something has been
selected. If it has, the method then gets
the selected object, creates a transfer-
able version of the data, and calls the
start drag function.

The list that acts as the drop target
must implement the DropTarget-

Listener interface and create a
DropTarget instance. The DropTarget
constructor is used to notify the drag-
and-drop framework that the list will
accept dragged objects.

Although a number of methods are
defined in the DropTargetListener inter-
face, the main one is the drop method,
which is called when an object is
dropped into the list.

The drop method gets the transfer-
able data from the DropTargetDrop-
Event. If the transferable data is the right
data type, a number of steps are taken.
First, the drop is accepted. Next, the
transferred data is retrieved and the
item is added to the list. Last, the drop-
Complete function is called to notify the
drag-and-drop framework that the drop
was completed successfully.

There’s a lot more to drag-and-drop
than presented in this simple example,
but the example shows the basic steps in
any drag-and-drop transaction.

The DNDHandler Class
Unlike the previous example, imple-

menting drag-and-drop in a more com-
plex GUI or a multiple document inter-
face involves a lot of code duplication, if
there are more than a couple of drag-
and-drop targets. It’s better if all the
common code for a drag-and-drop
transaction is contained in a single class
where it’s reused by any GUI component
that needs to implement drag-and-
drop.

This common drag-and-drop class is
called DnDHandler. It should contain as
much of the drag-and-drop functionali-
ty as possible and implement both the
drag and the drop interfaces.

A Reusable Drag and Drop Handler

WRITTEN BY
THOMAS HAMMELL

The ability to transfer information by dragging data from one
component to another has been around since the development of
the graphical user interface.Over the years drag-and-drop has gone
from a cool feature to a required piece of most user interfaces.
Most users expect to be able to drag objects between fields, win-
dows, or folders and have some action occur. Drag-and-drop is even
used to open applications by dragging a file to an application icon.

U S E R I N T E R F A C E S

Simplifying the implementation of the drag and drop

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 2 Simple drag-and-drop app

FIGURE 1 Drag-and-drop transaction

Java COM

62 SEPTEMBER 2001

thomas_hammell@hp.com

J2
SE

H
om

e
J2

E
E

J2
M

E
U S E R I N T E R F A C E S

AUTHOR BIO
Thomas Hammell is a

senior developer at
Hewlett-Packard

Bluestone and is part
of the tools groups

that develops various
tools for HP

middleware products.
He has over 15 years

of experience in
developing software.

Tom holds a BS in
electrical engineering

and an MS in
computer science

from Stevens Institute
of Technology.

The requirements needed to create a
draggable GUI component are:
• Implement the DragGestureListener

interface
• Create an instance of a DragSource
• Call the createDefaultDragGesture-

Recognizer method so the compo-
nent will be notified when a drag
action has been initiated

• Create a dragGestureRecognized
method that will get the draggable
data and start the drag

The only problem with making these
requirements into a generic class is that
the dragGestureRecognized method
must know how to get data from the
actual component. To get around this
problem, the dragGestureRecognized in
the DnDHandler class is changed so it
calls a getTransferable method to get the
data from the actual component. The
DnDHandler class makes this an
abstract method so it will need to be
implemented by the class extending it.

Now let’s look at the requirements for
a droppable GUI component:
• Implement the DropTargetListener

interface
• Create an instance of a DropTarget

instance
• Create a drop method to add the

dragged data to the component

Again, the only problem with mak-
ing these requirements generic is the
drop method, which needs to know how
to add the data to the dropped compo-
nent. For the DnDHandler class we’ll
modify the drop method to call an
abstract handleDrop method that
needs to be implemented by the class
extending the DnDHandler class. The
resulting DnDHandler class is shown in
Listing 3.

The DnDHandler class implements
the DropTargetListener, DragSource-
Listener, and DragGestureListener
interfaces. Its constructor takes the
components as an argument and cre-
ates an instance of a DragSource and
DropTarget and contains three abstract
methods:
1. getTransferable: Gets transferable

data from the component
2. handleDrop: Handles the drop action
3. getSupportedDataFlavors: Gets the

transferable data that’s supported

This DnDHandler class encapsulates
all the requirements needed to create a
drag-and-drop interface.

Using the DnDHandler Class
Let’s now rework our original drag-

and-drop example using the DnD-
Handler class and see how this simpli-
fies the implementation. To use the
DnDHandler class, the new class that’s
used to replace DraggableTree needs to
extend both JTree and the DnDHandler
classes, but Java’s single inheritance lim-
itation makes this impossible. To get
around this limitation we use an inner
class to extend the DnDHandler class,
while the main class extends JTree.

The reworked DraggableTree class,
DNDTree, is shown in Listing 4. The
inner class DNDTreeHandler does most
of the work. The only thing the outer
class does is create an instance of the
DNDTreeHandler. The DNDTreeHand-
ler class has the one argument construc-
tor needed by its parent and the imple-
mentation of the three abstract meth-
ods.

By implementing the handleDrop,
the DNDTree class has some improved
functionality over the original version.
The tree is now a drop target and items
from the list can be dragged onto the
tree. This is one of the advantages of
using the DNDHandler class: instead of
implementing all the methods of a

DropTargetListener, we simply write the
handleDrop function. If we didn’t want
the DNDTree to be a drop target, we
would still have to implement the
handleDrop function, but we could just
ignore the drop event or call the
rejectDrop method.

The reworked Droppable list class is
called DNDList (see Listing 5). It’s coded
in a similar manner to the DNDTree
class.

The reworked example is still a sim-
ple application of drag-and-drop but it
does show how the DNDHandler calls
simplify drag-and-drop implementa-
tion. Instead of implementing three
interfaces and numerous methods,
drag-and-drop can now be executed by
writing three simple methods.

Conclusion
The DnDHandler class has proven

very useful in our development of user
interfaces. It allows us to add drag-and-
drop features to the user interface more
quickly and also provides a central place
to control the low-level workings of
drag-and-drop. We’re using it under Java
1.3 on both Windows and UNIX and
haven’t experienced any problems.

Most real-world projects will have
many more transferable data types than
the simple example presented. The
management of these transferable data
types is an important implementation
issue that must be considered when
using drag-and-drop in a complex user
interface.

Hopefully this article has taken some
of the mystery out of implementing
drag-and-drop. Although it looks diffi-
cult, it’s fairly straightforward using a
class such as DnDHandler.

Reference
1. Zukowski, J. (1999). John Zukowski’s

Definitive Guide to Swing for Java 2.
Apress.

It’s no longer a question
of whether drag-and-drop

should be used but of
how much

“
”

Java COM

64 SEPTEMBER 2001

New-car buyers often fear that they’re
getting a “Friday afternoon” vehicle –
a car built by the last shift at the end

of a tough week. Manufacturers have spent an
untold number of man-years trying to pre-
vent such defects.

As developers you face the same problem:
no matter how carefully you work, you’ll
inevitably make mistakes. The quality assur-
ance department within your organization

should be able to catch your mistakes before
they make it into production, but they’re the
last line of defense. Ideally, you’ll want to test
your code before it makes its way over to the
QA department. The sooner you find the
problem, the easier it is to fix.

A number of products can help you test
your code – but many of these solutions
require you to write complicated test rou-
tines and scripts. These scripts often get
out of sync with the code as project dead-
lines grow short. ParaSoft offers a fresh
alternative with their Jtest 4.0 product.

Jtest Particulars
Jtest, itself a Java application, pro-

vides three different types of testing for
your Java code:
• Static testing
• White-box testing
• Black-box testing

The simplest of these is static testing.
Jtest compares your Java source code
against a set of predefined coding rules,
checking source code against a variety of
rules from over 20 different categories. As a
programmer I generally dislike this type of
automated source-code checking because
it rarely takes into account my personal
coding style. However, static testing is an
invaluable resource for project managers as
it helps ensure that coding styles are consis-
tent across developers and programs. It’s
much easier to support and maintain code
that’s been built in a consistent fashion across

modules. In this era of “guerilla” software
development, such consistency checking is

doubly important. Jtest allows you to edit the
static testing rules, making the entire process

much more palatable. Figure 1 shows the Jtest
rules list in the overlay window.

You can pick and choose from the list of pre-
built rules, and you can use the RuleWizard to
add customized rules. The complete set is then
stored as a file that can be shared among devel-
opers. Thus the project manager can configure
a single set of rules that can be applied across
an entire team of developers. I was able to use
Jtest on some sample Java code (as shown in
Figure 1) and it quickly pointed out some of the
most common mistakes. (Jtest can’t access JAR-
based code, for example, and you have to pro-
vide Java source files for static analysis.)

The second layer of testing offered by Jtest,
white-box testing, checks to ensure that a
class is structurally sound. (It doesn’t attempt
to verify that a class behaves according to
specification.) With Jtest you may need to cre-
ate some “test classes” to thoroughly exercise
certain types of code (such as EJBs, RMI, and
application server integration).

Black-box testing checks that a class
behaves according to specification (test cases
the user generates). It checks that the class
produces the correct output (outcomes) for a

given input (or set of inputs). Jtest can derive
inputs from your code by using Design by
Contract (DbC) instrumentation, and you can
also create explicit test classes that Jtest will
use to exercise your code. (Jtest’s static tests
can help you to verify that the DbC assertions
are contained within your Java code.)

ParaSoft provides extensive documentation
on its Web site, including tutorials, FAQs, and
user manuals. I was relatively impressed with
the amount of information available there for
developers, and I encourage you to take a look.
When the time comes to run a trial of the soft-
ware, you can download it from the site,
though you’ll need to request a license key for
Jtest. The key is machine-specific, that is, you
can’t use the software on multiple machines
without requesting multiple license keys.

I was able to get the software installed quickly
and easily. Jtest uses a Java-based user interface,
and it’s relatively speedy. The UI maps errors and
deficiencies back to your Java source code, but it
doesn’t automatically coordinate the outline con-
trols in the display windows. (You can select an
error condition in the results display and Jtest will
open up the appropriate detailed results window,
but it’s up to you to click through the detailed
results window to get to the specific line items.)
Jtest automatically handles regression testing, so

I was able to make iterative changes to my code
and fix errors as I went along.

JDJ Product Snapshot
• Target audience: Java project managers,

Q/A team, Java programmers
• Level: Entry level to advanced
• Pros: Comprehensive testing, multiplat-

form support, reasonably priced
• Cons: No automated GUI testing, limited

integration with popular Java IDEs

Summary
Jtest 4.0 offers a nice platform for building

consistent, well-tested Java applications. The
integration of static, white-box, and black-box
testing makes Jtest an interesting product, but
to harness the complete power of Jtest you’ll
need to invest in the Design by Contract pro-
gramming methodology.

ParaSoft
2031 S. Myrtle Ave.
Monrovia, CA 91016
888 305-0041
www.parasoft.com

Test Environment:
Toshiba Satellite Pro 4600, 866
MHz Intel Pentium III processor,
20GB disk, 256MB RAM,
Windows 2000 w/Service Pack 2

Specifications:
Platforms: Windows
NT/2000/98/ME, Linux, Solaris
Pricing: $3,495/developer

specs

P R O D U C T R E V I E W

Jtest
4.0

FIGURE 1 Jtest Project window with rules overlay

by ParaSoft

REVIEWED BY JIM MILBERY

jmilbery@kuromaku.com

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

66 SEPTEMBER 2001

J2
SE

H
om

e
J2

E
E

J2
M

E

welcome to the Java Reflection universe.
Once you’ve been there, you’ll never think about pro-
gramming the way you used to.

Imagine that you’re a C++ programmer and you have
to implement the following program:
1. Ask for a class name.
2. Create an object of that class.
3. Show the field names for the object and their values.

Ouch! As a C++ programmer you’ll start thinking
about all the tables or if-then-else-if lists you’ll have to
create. In Java? Forty lines of code, tops! How come?
Reflection uses runtime support not present in lan-
guages like C or C++. The kinds of things you can do with
Reflection can’t be done in those languages.

Reflection is a way of thinking; it’s a metalanguage
that enables you to analyze and manipulate your objects
in a dynamic way. Once you see its possibilities, the sky’s
the limit: serialization, expression evaluation, language
interpretation, class factories, object description, plug-in
architectures – you name it. Reflection is one of the most
exciting features of Java.

Big industrial-strength protocols like SOAP and

JavaBeans wouldn’t be possible if it weren’t for
Reflection. Every time you drag-and-drop an

object in your favorite IDE into a form,
Reflection is orchestrating the action
behind the scenes. Actually, most sophis-
ticated Java applications rely on
Reflection in one way or another.

Reflection is an advanced feature of
the Java environment. It gives runtime

information about objects, classes, and
interfaces. Reflection answers questions

like:
• Which class does an object belong to?

• What is the description of a given class name?
• What are the fields in a given class?
• What is the type of a field?
• What are the methods in a class?
• What are the parameters of a method?
• What are the constructors of a given class?

Reflection also lets you operate on objects and do
things like:
• Constructing an object using a given constructor
• Invoking an object’s method using such-and-such

parameters
• Assigning a value to an object’s field
• Dynamically creating and manipulating arrays

Now you know the spirit behind Reflection. Let’s
explore its technical side.

Java Reflection Classes
With the exception of the class Class that resides in

the default Java package, all Reflection classes are con-
tained in the package java.lang.reflect.

Classes are represented by the class Class, class Fields
by the Field class, methods by the Method class, con-
structors by the Constructor class, and arrays – you
guessed it – by the Array class.

Java COM

68 SEPTEMBER 2001

Class
Every class and interface in Java is described by a

Class object. There are methods in Class to get all the
information about the class: name, parent class, con-
structors, fields, methods, interfaces implemented, and
so on.

To obtain the class that an object belongs to, you call
the method Class getClass(). This method is defined in
the Object class (root of the Java classes hierarchy) and is
therefore available to any object.

String myString = "my string";

Class theClass = myString.getClass();

Every class in Java has a property “.class” that returns
a Class object for the class.

if (myString.getClass()==String.class)

System.out.println("The object is a String");

Primitive types such as int or Boolean are represented
by Class objects as well. The wrapper classes (Integer,
Boolean, Double,…) contain a “.TYPE” property that
returns the Class object representing the primitive type.
Class Class highlights are shown in Table 1.

Class myClass = Integer.TYPE;

Field
The Field class describes the different attributes of

a Java class field. From a Field object you can get the

field name, its type, and its accessibility. It also con-
tains methods to set and get the field’s value for a given
object (see Listing 1). Class Field highlights are given
in Table 2.

Method
The Method class allows you to get information about

class methods. You can get the method name, its type, its
accessibility, and its parameter types. You can also invoke

the method on a particular object and pass a set of
parameters to it (see Listing 2). Class Method highlights
are given in Table 3.

Constructor
The Constructor class allows you to get information

about class constructors such as parameter types, num-
ber of parameters, and accessibility. It also lets you
invoke the constructor to create new object instances
(see Listing 3). Class Constructor highlights are shown in
Table 4.

Disadvantages and Misuses
I agree that it isn’t straightforward to think about

thinking. Using Reflection isn’t easy at the beginning. The
model is simple, but you’re using objects called Object,
classes called Class, methods called Method…. It takes
time to get used to it, but believe me, once you get com-
fortable with the model, what you can do with Reflection
is amazing.

• • •
Up to now I’ve deliberately avoided the subject of

exception handling. Almost every Reflection method
throws exceptions, making the code very confusing. Not
helping the situation is the wrapping/unwrapping of
primitive types. What I’ve done to alleviate this is to cre-
ate a ReflectionUtilities library that hides all the imple-
mentation details and lets me concentrate on my reflec-
tive task.

The methods I’ve introduced so far to access class
members work only on public members, by default. If

this weren’t the case, you could fool the VM and access
members illegally, jeopardizing the security of the sys-
tem. You can change the default behavior, but that
implies that you have the right to do so, which isn’t usu-
ally the case on Web-delivered applications. This forces
you to have to declare the class members that you want
to expose to Reflection as public. Object-oriented advo-
cates will tell you that this can violate the encapsulation
principle.

J2
SE

H
om

e
J2

E
E

J2
M

E

Class forName(String className) Returns a Class object for a given class or interface name. The name must be fully qualified.
Field[] getFields() Returns all public-accessible fields of the class or interface.
Field getField(String fieldName) Returns a public Field object for a particular fieldName in the class or interface.
Method[] getMethods() Returns all public-accessible methods of the class or interface.
Method getMethod Returns a Method object given its name and parameter types. Java accepts method overloading, which means you
(String methodName, Class[] parameterTypes) can have multiple methods with the same name and different formal parameters.
Constructor[] getConstructors() Returns all public-accessible constructors of the class.
Constructor getConstructor Returns a Constructor object representing the class constructor that has the given list of formal parameter types.
(Class[] parameterTypes)
boolean isAssignableFrom Can the class or interface represented by classParameter be converted into the class or interface?
(Class classParameter)

TABLE 1 Class Class highlights

Class getType() Returns a Class object representing the field type.
Class getDeclaringClass() Returns the Class object that represents the class or interface that declared the field.
String getName() Returns the field’s name.
Object get(Object object) Returns the field’s value of a given object. For static fields you can pass null as the object.
void set(Object object, Object value) Sets the field’s value of a given object. For static fields you can pass null as the object.
int getInt(Object object) For each of the primitive types there is a convenience “get” method; myField.getInt(myObject) is equivalent to

((Integer) myField .get(myObject)).intValue()
void setInt(Object object, int value) Once again, convenience “set” methods for each primitive type; myField.setInt(myObject, 4) is equivalent to

myField.set(myObject, new Integer(4))

TABLE 2 Class Field highlights

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

70 SEPTEMBER 2001

You can use Reflection in a variety of ways, but some-
times there are better tools to accomplish the same task.
Suppose you want to find out whether an object contains
a certain method and, if it does, invoke it. You can do this
using Reflection (see Listing 4).

Java has a cleaner way to do it, however. Declare an
interface that declares the method and implement that
interface in the classes that have the method. Then call
the method in the following way:

if (anObject instanceof MyInterface) {

// Does anObject implements MyInterface?

((MyInterface) anObject).myMethod(); // If

it does, invoke myMethod()

}

This code works if you know in advance the classes
that will contain myMethod and whether they imple-
ment MyInterface. If you don’t know, Reflection is the
way to go.

Putting Everything Together
Reflection can be used in very different contexts to

achieve completely different results. And since you must
be eager to see some action at this point, I’ll present three
cases in which Reflection delivers elegant solutions.

Case 1
Suppose you want to have

a function to convert strings
into colors. The strings

you’d like to pass are
color names, and the
function should return
the appropriate color:

Color myColor =

ColorTools.

getColorByName(

"black");

// myColor will con-

tain the color

Color.black

If you don’t use Reflection,
you have to maintain a map-
ping structure that relates
color names to Color objects.
If the folks at Sun decide
tomorrow to introduce the
pinkPanther Color constant,

you’ll have to add it to your map. If there are 10,000 Color
constants, the map will be enormous. This is where you
can utilize Reflection to analyze the Color class and find
its Color constant names and their values. See Color-
Tools.java in Listing 5 for details. (Because of space con-
siderations, this listing and the corresponding ones for
Cases 2 and 3 appear only on the Web at www.sys-
con.com/java/sourcec.cfm.)

Case 2
If you develop GUIs in Java, you must be familiar with

and probably resigned to using the wordy and annoying
anonymous classes to connect component events to
their event handlers. Well, there’s still hope: by using
Reflection you can remove all the anonymous classes.

The trick is to use a naming convention (usually
called an idiom by the scholars) to relate the components
to their events and then use Reflection to analyze the
class, find the components and event handlers, add
event listeners, and invoke the event handlers.

Because there’s no explicit code in your form that
relates handlers to events, the event handlers seem to be
called by magic. This is why I like to call this methodology
“Magic Couplers.” Refer to MagicCoupler.java in Listing 6
to see how to accomplish it – there’s no magic after all….

If you adopt this elegant technique, your GUI code
will once again be about handling the events, not about
connecting event handlers. Magic Couplers have two
drawbacks:
1. This one, inherited from the security issues, is the need

to declare the components and the event handlers as
public so we can access them with Reflection.

2. The connection between events and event handlers is
done now at runtime. It means there’s no compile-
time checking to ensure that the event handlers are
named correctly. You can add code (which I removed
from the example for brevity) to check that the event
handlers correspond to a component and report
“unlinked” event handlers.

ReflectionTest.java (see Listing 7) creates a form with
a combo box that displays all the color names and two
buttons that trigger their event handlers using Magic
Couplers (see Figure 1).

Case 3
Another great use of Reflection is for creating

application plug-ins. You can design software that
allows you and third-party vendors to create exten-
sions for it. This is accomplished very simply. First,

Colors in the combo
box are retrieved

with Reflectionw

Panel color is
retrieved using

Reflection

Event handlers for
the buttons are
invoked using

Reflection

FIGURE 1 Form created by ReflectionTest.java Reflection

Class getReturnType() Returns a Class representing the method’s return type. Void.class represents the void return type.
Class getDeclaringClass() Returns the Class object that represents the class or interface that declared the method.
String getName() Returns the method’s name.
Class[] getParameterTypes() Returns the parameter types for the method. If the method doesn’t have parameters, the returned array will

have no elements.
Object invoke(Object object, Object[] Invokes the method on a given object, passing to it the given parameters. If the method is static,
parameterValues) the object can be null.

TABLE 3 Class Method highlights

Class getDeclaringClass() Returns Class object that represents the class or interface that declared the constructor.
Class getParameterTypes() Returns parameter types for the constructor. If it is the default constructor, returned array will have no elements.
Object newInstance(Object[parameterValues) Uses the constructor with specified parameter values to create new object instance.

TABLE 4 Class Constructor highlights

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

72 SEPTEMBER 2001

define the plug-in interface that enables you to
access the plug-in.

package plugins;

public interface MyApplicationPlugIn {

// Interface definition here

…

}

Every plug-in must implement the interface
(that’s what makes it a plug-in of your applica-
tion).

package plugins;

public class APlugIn implements

MyApplicationPlugIn {

// Interface implementation here

….

}

Now you can browse the plug-ins directory to
get the plug-in names and dynamically load them
by calling:

// plugInNames contains the fully qualified

names of the plug-in classes

for (int i = 0; i < plugInNames.length;

i++) {

MyApplicationPlugIn plugIn =

(MyApplicationPlugIn)Class.classFor(

plugInNames[i]);

// Do something with the plug-in here

…

}

Summary
Java Reflection gives you a metalanguage to ask

questions and manipulate classes, interfaces, and
objects.

The class Class describes the different attri-
butes of Java classes and interfaces in terms of
Field, Method, and Constructor objects. These
objects in turn let you inspect and manipulate
object attributes and create new objects dynam-
ically.

Now that you know the power and dangers of
Java Reflection, use it wisely!

AUTHOR BIO
José María Barrera is director of Internet applications development at
Caminus Corp., a leading software company for the energy sector.
A designer/creator of software using Java and XML, José has been involved
with computers for the last 17 years. He holds an MS degree in computer
science from New York University.

jose.barrera@caminus.com

java.awt.Point p = new java.awt.Point(10,20);

Class pointClass = p.getClass();

// You could call Point.class as well

Field xField = pointClass.getField("x");

xField.setInt(p, 3);

// Set receives an object as its second parameter,

// we

have to wrap the 3

System.out.println(p.x);

// Will print 3

Class[] parameterTypes = new Class[]{String.class};

Object[] parameterValues = new Object[]{"this line was printed

using Reflection"};

// Get the class for System.out

Class class = System.out.getClass();

Method printlnMethod = class.getMethod("println", parameterTypes);

printlnMethod.invoke(System.out, parameterValues);

// The string is printed here

Class[] parameterTypes= new Class[]{Integer.TYPE, Integer.TYPE,

Integer.TYPE};

Object[] parameters = new Object[]{new Integer(255), new

Integer(0), new Integer(0)};

Class colorClass = Class.forName("java.awt.Color");

Constructor colorConstructor = colorClass.getConstructor

(parameterTypes);

Object myRedColor = colorConstructor.newInstance(parameters);

try {

// Try to get the method myMethod () from the class of the

object myObject

Method myMethod = anObject.getClass().getMethod

("myMethod", new Class[]{});

// Invoke the method

myMethod.invoke(myObject, new Object[]{});

}

catch (NoSuchMethodException nSchMetE) {}

// Thrown by getMethod if the method is not found

catch (SecurityException secE) {}

// Thrown by the security manager to indicate a security violation

catch (IllegalAccessException illAccE) {}

// Thrown if current method does not have access to myMethod

catch (IllegalArgumentException illArgE){}

// Thrown if an argument passed is inappropriate

catch (InvocationTargetException iTarE) {}

// Thrown if myMethod throws an exception, you can call

// iTarE.getTargetException() to get the exception.

Listing 4

Listing 3

Listing 2

Listing 1

Java COM

74 SEPTEMBER 2001

AUTHOR BIO
Jason Briggs works as a Java analyst programmer in London. He’s been officially

developing in Java for three years – unofficially for just over four.

jasonbriggs@sys-con.com

If the computer industry was a cat fight,
right now fur would be flying in every
direction. Microsoft’s recent decision to

drop Java from their Windows XP distribution
is a prime case in point. Spin merchants pop
up left, right, and center to fire a barrage of
FUD (Fear, Uncertainty, and Doubt) missiles
at whomever will listen, and then vanish in a
puff of marketing dust. The general media is
just as guilty of hyping this mini battle of
words – I’ve lost count of the number of
reporters who seem to think that “Java-on-
the-PC-desktop” is equivalent to “the-whole-
of-Java,” and predict doom and gloom for all
Java developers if Microsoft doesn’t distribute
their VM with the operating system.

Meanwhile, it’s interesting to note that
although a few developers in the community
have got caught up in the excitement, the rest
of us try to ignore it and get on with the tasks
at hand. Programmers keep on program-
ming; innovators keep on innovating.

On the subject of “getting on with things
and ignoring it,” I recently looked at a forth-
coming offering from one company, which
will no doubt benefit from users having to
employ the plug-in instead of Microsoft’s fast
but substandard JVM. Lux Inflecta (www.lux-
inflecta.com) is a UK/Icelandic company
that has come up with a somewhat unique
offering in the hosting industry. Rather than
just providing an application server and
hosting service, GIZA is a full Java develop-
ment and deployment environment offering
an install-on-demand IDE and featuring
support for J2EE, J2SE, and J2ME (including
MIDlets and Spotlets). Basically a developer
can develop his or her application and run it
from Lux Inflecta’s server, without a huge
outlay for their own equipment. GIZAee,
their flagship product, has a one month free
trial and is also free to academics. Yet anoth-
er example of how companies are coming up
with novel products using Java technology.

The Mobile Game Interoperability Forum,
which was in the news recently, has some
rather big names as founding members:

Ericsson, Motorola, Nokia, and Siemens.
According to an information sheet that recent-
ly arrived on my desk, the goals of the MGI
Forum are to define both an interoperability
specification for mobile games and APIs for
network-based servers, focus on client/server
style wireless games, and help games develop-
ers produce and deploy their games.

Quite an ambitious set of targets; so it
will be interesting to see what the Forum
comes up with over the next year or so.

The subject of games development
brings me to this month’s issue of JDJ –
Chris Melissinos, Sun’s chief gaming officer,
is a man dedicated to bringing Java-based
games to a machine near you, be it the
computer, the games console, or the hand-
held device. You’ll find his thoughts in this
month’s guest editorial. Following on that
theme, Tom Sloper, games producer extra-
ordinaire, presents a treatise to help those
who might be involved in designing those
games as well as developing them.

I have to admit, games development has
been on my mind quite a bit lately. There
must be something about seeing all those
mobiles that makes me think of tiny, pixelated
people jumping across the screen (actually,
the idea running through my head is a little
more original, but I’m not giving that away).

Also in this month’s issue Vincent Perrier
from WindRiver presents a piece on “Making
Java Work in Embedded Devices.” Glenn
Coates from Vulcan Machines discusses JVM
selection and integration, the types of JVMs
you might find for embedded devices, and
how your company might go about choosing
a virtual machine for your product.

• • •
Are you a developer working on a J2ME

application? If so, JDJ wants to hear about
it! You won’t win any prizes, but you might
help motivate your fellow developers, and
get a chance to present your thoughts on
the oddities of the J2ME platform. E-mail
me your thoughts at jasonbriggs@sys-
con.com.

J 2 M E E D I T O R I A LO R

Cat Fight

J 2 M E I N D E X

JASON BRIGGS J2ME EDITOR

Cat Fight
If the computer industry was a

cat fight, right now fur would
be flying in every direction.

by Jason Briggs

Battle Ogres Everywhere
With Java 1.4 and Java3D, the

ability to deliver true cross-
platform, high-performance

gaming is here.
by Chris Melissinos

J2ME FAQ
Answers to your
J2ME questions

The Great J2ME
API Rundown

All the APIs that fall beneath
J2MEs umbrella

DoJa in NTT
DoCoMo Phones

MIDP and DoJa are quite simi-
lar, but, at the same time,

different.
by Zev Blut

Making Java Work in
Embedded Devices

How to overcome some of the
common pitfalls inherent in the
Java development environment

by Vincent Perrier

JVMs for Embedded
Environments

A look at some of the trade-
offs involved in implementing

JVMs
by Glenn Coates

Freedom Through
Constraints

How to apply basic game
design principles to wireless

phones and PDAs
by Tom Sloper

A Beginner’s Guide to
Writing Applications for

the MID Profile, Part 3
How a MIDlet fits into the

big picture
by Jason Briggs

74

106

110

82

92

98

80

78

76

H
om

e
J2

E
E

J2
SE

J2
M

E

76 SEPTEMBER 2001

Video games are finally entrenched in
popular culture and are as wide-
spread a form of entertainment as

movies and television. What’s most startling is
that the games industry achieved this enter-
tainment parity without relying on the stan-
dards found in the television and movie
industries. This was possible because games
were played on proprietary systems designed
to do one thing: play games. But in today’s
world of 206MHz PDAs and 3D-capable cell
phones, games are being played everywhere,
and for a content industry that has no set
standards this presents a significant problem:
chasing customers across multiple devices.

Compounding this problem is the
onslaught of competition from large media
companies that already have broadcast
standards in place. They place their content
on the same game-playing devices and fight
for t4he same consumer’s attention. To com-
pete effectively in this arena, game develop-
ers need to stop thinking about individual
devices as game platforms and consider
these devices as part of the landscape
encompassed by their games. This is why I
strongly believe that Java will emerge as the
unifying technology for the games industry.

Java technologies have made tremen-
dous strides in improved performance in
the past couple of years, approaching the
speed of compiled C++ code today. With Java
1.4 and Java3D, the ability to deliver true
cross-platform, high-performance gaming
is here today. Consider the first person
shooter developed by Full Sail Real World
Education, a media school in Orlando,
Florida, shown at QuakeCon in August of
this year. The game, Jamid, was developed
using Java3D and Java 1.3 and runs full-
screen at 60+ frames per second on a sub-
$1,000 PC. Oh yeah, it also runs unmodified
on Windows, Solaris, and Linux.

Running such a game on a mobile
phone might not be the best use of the
phone’s capabilities – what with limited
memory, input, and performance – so the
challenge is in discovering how to incorpo-
rate the mobile phone into a game frame-
work. Let’s use a massively multiplayer RPG
(MMRPG) as an example. In an MMRPG
there’s a tremendous amount of time that

typically goes into playing and maintaining
a character. The average EverQuest player,
for example, spends an average of 28 hours
a week on the game. The problem is that
when you’re maintaining your character,
you’re not playing the game.

By moving the less computationally
intensive components (such as character
maintenance, communication, and trad-
ing functions) to a mobile device, you
achieve three things.
1. Keep your content in front of your cus-

tomer: This keeps the game world, char-
acters, and brand in front of the game
player. It’s a world where players spend
at least one day a week in, and you’re
enabling them to engage in more pieces
of that world.

2. Allow the player to prepare characters
for game play at a later time: Players
can do the tedious maintenance sepa-
rately from the gaming rig, preparing
their character from their mobile phone
while sitting on the train on the way
home from work or during their lunch
break. Later, when the players are ready
to sit down and battle some ogres, they
just jump in and start battling.

3. Derive more revenue from your cus-
tomer: If you have someone playing a
game 28 hours a week and paying you
$10 a month for the privilege of having
this addiction, being charged $5 more
for access to the game components
from any connected device is not a huge
leap for the player to make.

The advantages that Java will provide in the
form of cross-platform development, reduc-
tion in time-to-market, reuse of code, discov-
ery of alternate revenue channels, and provid-
ing game companies the ability to reach out
beyond the traditional console market and
leverage the Web as the game platform, will be
unprecedented. There are already significant
efforts underway to build the components in
Java to make it the de facto standard for game
development. Sun Microsystems, Inc., is work-
ing with several major game developers and
hardware manufacturers, including Sony, on

Battle Ogres Everywhere!

G U E S T E D I T O R I A L

Java COM

chris.melissinos@sun.com
AUTHOR BIO

Chris Melissinos is Sun Microsystems’ chief gaming officer and is responsible for the development of Sun’s programs and strategies
targeting the electronic entertainment industry.

WRITTEN BY CHRIS MELISSINOS

PUBLISHER, PRESIDENT,AND CEO
FUAT A. KIRCAALI fuat@sys-con.com

A D V E R T I S I N G
SENIOR VICE PRESIDENT, SALES AND MARKETING

CARMEN GONZALEZ carmen@sys-con.com
VICE PRESIDENT, SALES AND MARKETING

MILES SILVERMAN miles@sys-con.com
ADVERTISING SALES DIRECTOR

ROBYN FORMA roybn@sys-con.com
ADVERTISING ACCOUNT MANAGER

MEGAN RING megan@sys-con.com

ASSOCIATE SALES MANAGER
CARRIE GEBERT carrieg@sys-con.com

SALES ASSISTANT
ALISA CATALANO alisa@sys-con.com

E D I T O R I A L
EXECUTIVE EDITOR

M’LOU PINKHAM mpinkham@sys-con.com
EDITOR

NANCY VALENTINE nancy@sys-con.com
MANAGING EDITOR

CHERYL VAN SISE cheryl@sys-con.com
ASSOCIATE EDITOR

JAMIE MATUSOW jamie@sys-con.com
ASSOCIATE EDITOR

GAIL SCHULTZ gail@sys-con.com
ASSOCIATE EDITOR

BRENDA GREENE brenda@sys-con.com
ASSISTANT EDITOR

LIN GOETZ lin@sys-con.com

P R O D U C T I O N
VICE PRESIDENT, PRODUCTION AND DESIGN
JIM MORGAN jim@sys-con.com

ART DIRECTOR
ALEX BOTERO alex@sys-con.com

ASSOCIATE ART DIRECTOR
LOUIS F. CUFFARI louis@sys-con.com

ASSISTANT ART DIRECTOR
CATHRYN BURAK cathyb@sys-con.com

GRAPHIC DESIGNER
ABRAHAM ADDO abraham@sys-con.com

GRAPHIC DESIGNER
RICHARD SILVERBERG richards@sys-con.com

GRAPHIC DESIGNER
AARATHI VENKATARAMAN aarathi@sys-con.com

W E B S E R V I C E S
WEBMASTER

ROBERT DIAMOND robert@sys-con.com
WEB DESIGNER

STEPHEN KILMURRAY stephen@sys-con.com
WEB DESIGNER

PURVA DAVE purva@sys-con.com

WEB DESIGNER INTERN
CAROL AUSLANDER carol@sys-con.com

A C C O U N T I N G
ASSISTANT CONTROLLER

JUDITH CALNAN judith@sys-con.com
ACCOUNTS RECEIVABLE

JAN BRAIDECH jan@sys-con.com

S Y S - C O N E V E N T S
VICE PRESIDENT, SYS-CON EVENTS

CATHY WALTERS cathyw@sys-con.com
CONFERENCE DIRECTOR

DANIELLE NAPPI danielle@sys-con.com
CONFERENCE MANAGER

MICHAEL LYNCH mike@sys-con.com
SALES EXECUTIVE, EXHIBITS

MICHAEL PESICK michael@sys-con.com
SALES EXECUTIVE, EXHIBITS

RICHARD ANDERSON richard@sys-con.com
SHOW ASSISTANT

NIKI PANAGOPOULOS niki@sys-con.com
JDJSTORE.COM

ANTHONY D. SPITZER tony@sys-con.com

H
om

e
J2

E
E

J2
SE

J2
M

E

–continued on page 78

Java COM

78 SEPTEMBER 2001

J 2 M E F A QQ
H

om
e

J2
E

E
J2

SE
J2

M
E

A
Q

A
Q

A
Q

A
Q

A
Q

IS PERSONALJAVA PART OF J2ME?
The short answer is yes. For the long answer, we'll refer to Sun’s FAQ for J2ME, which

states that PersonalJava was the “first Micro Edition technology.” Because PersonalJava
has been around for a while now, you’ll find more products with a version of it installed.
But sometime this year (2001), Sun is expected to replace the existing PersonalJava tech-
nology – based on Java 1.1 – with a new release based upon Java 2, and incorporated into
the J2ME concepts of Configuration and Profile components.

IS ALL THE JAVA API WITHIN J2ME?
No. Even PersonalJava – which has the most complete coverage of the Standard

Edition API – is still just a subset.

WHAT IS A “MIDLET”?
Actually, the correct word is MIDlet. A MIDlet is an application written for MIDP (the

Mobile Information Device Profile). You might find these on mobile phones, PDAs – in
general, small devices.

CAN I USE THREADS? IS THERE A PENALTY?
Yes, you can use threads, unless you’re writing a JavaCard applet. As for the penalties, it very

much depends upon how you want to use them, and the environment you are working within.
When developing for constrained devices, you always have to keep the resources you have avail-
able in the back of your mind. If you’re writing a MIDlet, and create 100 threads to try to load 100
images simultaneously, then there definitely will be a penalty – it undoubtedly won’t work.

DO I USE AWT OR SWING FOR MY GUI?
If you’re developing a PersonalJava application, then you have access to a modified

version of AWT – “modified” meaning that a few java.awt classes/methods are optional,
that some have been changed, and that there are some additions to the basic package. You
may be able to get Swing to work within a PersonalJava environment as well. A brief skim of the
PersonalJava forums show some success stories – and more than a few painful attempts. None
of the other J2ME “products” support AWT or Swing (for example, MIDP has the
javax.microedition.lcdui package, for user interfaces).

WHERE CAN I FIND MORE INFORMATION ABOUT WIRELESS TECHNOLOGIES?
The back issues of JDJ are one place you can look. For online information, you can look

at the following URLs:
1. http://developer.java.sun.com/developer/products/wireless/
2. Bill Day's J2ME archive: www.billday.com/j2me/
3. Sun's Wireless forums: http://forum.java.sun.com/

WHERE CAN I DOWNLOAD J2ME EMULATORS?
The J2ME Wireless Toolkit: http://java.sun.com/products/j2mewtoolkit/

download.html
To download the MIDP reference implementation on this page:

http://java.sun.com/products/midp/
CLDC : www.sun.com/software/communitysource/j2me/cldc/download.html
CDC (and the Foundation profile): www.sun.com/software/communitysource/

j2me/cdc/download.html

WHERE CAN I FIND DEVICES THAT RUN J2ME?
Move to another country. At the moment, there are a limited number of countries

where J2ME capable devices have been released – especially for mobile phones. While
you can probably find PDAs that support PersonalJava almost anywhere in the world, the
same is not true for mobiles.

In Japan, NTT DoCoMo has a number of phones from Panasonic, Fujitsu, Sony, and
others (only available in Japan, of course). In the U.S., Motorola has a couple of J2ME
capable mobiles. For a more comprehensive list, check out www.javamobiles.com/

A
Q

A
Q

A
Q

the Java Game Profile (JSR-134). This Java Specifi-
cation Request identifies the various areas of
game development, and the participating game
developers are working together to build the com-
ponents and technologies that will enable the first
true cross-platform game development technolo-
gies. Sun has also launched www.JavaGaming.org
to act as ground zero for Java game development,
offering everything from discussion boards to
sample code to cool links.

As the pressures and costs of developing
increasingly compelling game content in the
face of new competition continue to rise, the
benefits of Java become more attractive. With
the high level of penetration across dozens of
different media devices, Java is providing an
exciting, high-performance platform for the
next generation of games. As game developers
learn how to incorporate these devices into
their game framework, and look beyond the
box to the Web as the platform, the ubiquity of
Java will prove invaluable. Of all the great serv-
ices and technologies that are incorporating
Java, none will experience a greater impact
than the games industry. So check your
mobile phones, PDAs, cable boxes, and game
consoles. Your favorite game will show up
where you may least expect it: everywhere.

cases is far removed from Java.
We as a community are entering some

troubling times. Our decision to run with Java
is going to be questioned again by clients and
upper management. Microsoft is doing all it
can to arm these computer-illiterate people
with the information to fight Java, and to the
unthinking it does sound pretty convincing.

Our solutions will have to work twice as
hard to weather the storms we’re about to
encounter. We know the language doesn’t
need to prove itself, but the solutions we labor
in will have to stand up to a severe beating
from Redmond. To that end, we have to look
at the bigger picture and take responsibility
for more than just our “cog” in the engine.

applications executing on BEA’s application
servers to connect to EIS resources through
JCA connectivity to WebMethod’s adapters.
It’s obvious that both companies compete in
the application-execution space; however,
it’s testimony to the promise of JCA that they
chose to partner in the connectivity arena.

The J2EE platform allows us to properly
define the boundaries of our application box,
but the actual definition depends on the
environment, your company’s core compe-
tency, and your faith in the J2EE vision.

–continued from page 12

–continued from page 76

Together We Stand, Divided We Fall

Thinking Outside the Box ...

Battle Ogres Everywhere!

–continued from page 5

Java COM

80 SEPTEMBER 2001

H
om

e
J2

E
E

J2
SE

J2
M

E

Some of the more commonly asked ques-
tions on the various forums for J2ME
seem to be "What is J2ME?" and "Is <so-

and-so-product> a part of J2ME?" Here is
where you will find all the APIs that fall
beneath J2ME’s umbrella, and the packages you
will find within those APIs.

CONNECTED, LIMITED DEVICE CONFIGURATION
(CLDC) – VERSION 1.0

java.io input and output through data streams
java.lang fundamental classes
java.util collections, data and time facilities, other

utilities
javax. generic connections classes
micro-
edition.io

You can find more information on CLDC at the fol-
lowing: http://java.sun.com/products/cldc/

CONNECTED DEVICE CONFIGURATION
(CDC) – VERSION 0.2

java.io input and output
java.lang fundamental classes
java.lang.ref reference object classes
java.lang.reflect reflective information about

classes
java.math BigInteger support
java.net networking support
java.security security framework
java.security.cert parsing and management of

certificates
java.text used for handling text, dates,

numbers and messages
java.text.resources contains a base class for locale

elements
java.util collections, date/time, miscel-

laneous functions
java.util.jar reading Jar files
java.util.zip reading Zip files
javax.microedition.io connections classes

Look for more CDC information here:
http://java.sun.com/products/cdc/

MOBILE INFORMATION DEVICE PROFILE –
VERSION 1.0

java.io
java.lang CLDC, plus an additional

exception
java.util CLDC, plus timer facilities
javax.microedition.io networking support based

on the CLDC framework
javax.microedition.lcdui for user interfaces for MIDP

applications
javax.microedition.rms persistent data storage
javax.microedition.midlet defines applications and interac-

tions between app and envronment

The products page for MIDP is here:
http://java.sun.com/products/midp/

FOUNDATION PROFILE – VERSION 0.2
java.io see CDC
java.lang see CDC
java.lang.ref see CDC
java.lang.reflect see CDC
java.math see CDC
java.net see CDC
java.security see CDC
java.security.cert see CDC
java.security.acl access control lists

java.security.interfaces interfaces for generating keys
java.security.spec key specifications, and algo-

rithm parameter specifications
java.text see CDC
java.text.resources see CDC
java.util see CDC
java.util.jar see CDC
java.util.zip see CDC
javax.microedition.io see CDC

The profile products page is here:
http://java.sun.com/products/foundation/

J2ME RMI PROFILE (JSR #66)
This profile interoperates with J2SE RMI, and pro-

vides Java platform to Java platform remote method
invocation for Java devices

J2ME GAME PROFILE
This is a proposed Micro Edition specification, so

nothing is yet defined. According to the JCP home page
for JSR #134 (the Game Profile), the following areas will
be covered:

1. 3D Modeling and Rendering for Games
2. 3D Physics Modeling for Games
3. 3D Character Animation for Games
4. 2D Rendering and Video Buffer Flipping for Games
5. Game Marshalling and Networked Communication
6. Streaming Media for Games
7. Sound for Games
8. Game Controllers
9. Hardware Access for Games

PDA PROFILE (JSR#75)
The PDA profile will provide UI and storage APIs for
small, resource-limited handheld devices.

PERSONALJAVA SPECIFICATION – VERSION 1.2A
java.applet full support from JDK1.1.8
java.awt modified from JDK1.1.8
• Note: there is an extra method for PJ for double-
buffering in java.awt.Component
java.awt.datatransfer full support
java.awt.event full support
java.awt.image full support
java.awt.peer modified
java.beans full support
java.io modified
java.lang modified
java.lang.reflect modified
java.math optional – may or may not be

supported
java.net modified
java.rmi optional
java.rmi.dgc optional
java.rmi.registry optional
java.rmi.server optional
java.security modified
java.security.acl unsupported
java.security.cert some classes required, some

optional
java.security.interfaces required if code signing is

included
java.security.spec required if code signing is

included
java.sql optional
java.text full support
java.text.resources modified
java.util modified
java.util.jar required if code signing is

included
java.util.zip modified

Additional PersonalJava specific packages are:
com.sun.awt for mouseless environments

com.sun.lang a couple of error and exception
classes

com.sun.util for handling timer events

PersonalJava will eventually be superseded by the
Personal Profile. For more information on the
PersonalJava Application Environment:
http://java.sun.com/products/personaljava/

JAVA TV – VERSION 1.0
javax.tv.carousel access to broadcast file and

directory data
javax.tv.graphics root container access and

alpha blending
javax.tv.locator referencing data and resources
javax.tv.media controls and events for man-

agement of real-time media
javax.tv.media.protocol access to generic streaming

data in a broadcast
javax.tv.net IP datagram access
javax.tv.service service information access
javax.tv.service.guide supporting electronic program

guides
javax.tv.service.navigation services and hierarchical ser-

vice information navigation
javax.tv.service.selection select a service for presentation
javax.tv.service.transport information about transport

mechanisms
javax.tv.util creating and managing timer

events
javax.tv.xlet communications interfaces

used by apps and the app
manager

Get off that couch and check out the Java TV page
at the following:
http://java.sun.com/products/javatv/

JAVA EMBEDDED SERVER – VERSION 2.0
com.sun.jes.service.http servlet/resource

registrations
com.sun.jes.service.http.auth.basic http basic authen-

tication
com.sun.jes.service.http.auth.users management of

users and their
access

com.sun.jes.service.timer for handling timer
events

org.osgi.framework consistent model
for app. dev., sup-
ports dev. and use
of services

org.osgi.service.device detection of
devices

org.osgi.service.http http access of
resources

org.osgi.service.log logging facility

You can find more information on Embedded Server
on the following site:
www.sun.com/software/embeddedserver/

JAVA CARD – VERSION 2.1.1
java.lang fundamental classes
javacard.framework core functionality of a JC

applet
javacard.security security framework
javacardx.crypto extension package with secu-

rity classes and interfaces

Next time you use that American Express Blue card,
you may want to know how it works, so take a look
here:
http://java.sun.com/products/javacard/The

 Gr
eat

 J2M
EA

PI
Ru

ndo
wn

Here in Japan, where it’s common to see someone
thumbing away on a cell phone while on the
train, NTT DoCoMo was one of the first
companies in the world to release Java-capable
mobile phones. In the ensuing six months, more
than four million users have adopted the
phones – and the number is growing. That’s a
good enough reason for an aspiring J2ME
programmer with a sense of adventure to
learn a little about programming Java
applications for NTT DoCoMo phones.

 in NTT

A few basics on developing i-mode Java in mobile phones

 Written by Zev Blut

DoJa
DoCoMo

Phones

82 SEPTEMBER 2001

H
om

e
J2

E
E

J2
SE

J2
M

E

Java COM

83SEPTEMBER 2001

Java COM

Java COM

Before I go into the technical details on how to develop for
these phones, let’s talk about the types of devices available
today. Six models of the 503i series mobile phone, provided
by five manufacturers, are currently available to the con-
sumer .

A few common hardware traits of these mobile phones:
• They are small, light, and provide long hours of talk time.
• They provide a color screen, with at least 16 harmony audio

capability for ringtones and for use in applications.
• They have the capability to display GIF images.
• The phones can also write e-mail, browse a reduced form of

the Web, and download backgrounds and ringtones for cus-
tomizing the phone and, of course, Java applications.

More information about the 503i series phones can be
found at http://503i.nttdocomo.co.jp/normal/n_index.html
(in Japanese, but the site has lots of pictures).

For various reasons NTT DoCoMo released its own profile
for J2ME developers to use when programming for the
phones. This profile is known as i-mode Java – also called by
its nickname DoJa (DoCoMo’s Java). I-mode Java resides on

top of the Connected, Limited Device Configuration (CLDC),
just like the other – competing – profile, the Mobile
Information Device Profile (MIDP).

To clear things up quickly, MIDP and DoJa are not
compatible. Each has its own API and way of handling
things, such as the user interface and data storage. When
you write a program using MIDP, you write a MIDlet;
when you write a program using DoJa, you write an i-
appli. MIDP and DoJa are quite similar, but at the same

time different: the i-mode Java specifications have
defined many requirements that are currently left up

to the implementers of MIDP devices to decide.

I-Mode Java Specifications
When I first

looked at the i-
mode Java speci-

fications, my reac-
tion was that it’s too

strict. DoJa specifies that
all applications must be less

than or equal to 10KB in size.
How can you get a great pro-
gram that is going to revolution-
ize the world to fit in 10KB? Well,
don’t fret. Many interesting
applications have already been
written and keep me happily
occupied on my train rides to
Tokyo. I’m surprised by what I
have been able to fit in 10KB.

Another requirement of the
specification is that applica-
tions must be downloaded to
the handset from a Web page,

thus solving the over-the-air issues that some have had with
MIDP phones.

All applications have the ability to store up to 5KB of per-
manent data on the phone. Unlike MIDP, where you have
MIDlet Suites that can share data in storage, DoJa doesn’t
allow for the sharing of data among i-applis.

As mentioned previously, all phones must support the GIF
image format. In addition, all phones must allow
HTTP/HTTPS (SSL) connections to the host server that the i-
appli was downloaded from (SSL is built into the phones, pro-
viding end-to-end security from the handset to the Web site,
thus easily providing a solution for secure transmissions).

Not directly related to the specifications but still important
to know is that NTT DoCoMo charges the user 0.3 yen for
every 128 bytes of information sent from and received by the
phone. If you want happy users, you need to keep their bills in
mind when writing network-intensive applications.

DoJa provides four packages that are added to the ones
found in the CLDC: com.nttdocomo.io, com.nttdocomo.net,
com.nttdocomo.ui, and com.nttdocomo.util. Later in this
article, I’ll use some of the classes in the com.nttdocomo.ui
package to help you get acquainted with developing i-applis.

Resources and Tools for Developing I-Applis
Now that I’ve introduced the basics, let’s cover what you

need to do to start developing i-applis. First, go to NTT
DoCoMo’s Web site about i-mode Java and download two
English .pdf files (www.nttdocomo.com/i/java/index.html).
These documents are an API listing and a developer’s guide to
creating i-applis. They’ll be of considerable use for further
exploration.

Once you have these documents, you need to get an emu-
lator and an SDK to develop with. First you should get the

CLDC SDK from http://java.sun.com/products/cldc/. This
provides the CLDC base classes, source code, and documen-
tation.

If you’re familiar with the J2ME Wireless Toolkit provided
by Sun Microsystems for developing MIDlets, then you’ll be
pleased to know that NTT DoCoMo provides a modified ver-
sion of this toolkit for developers. It can be found on the
Japanese Web site at http://www.nttdocomo.co.jp/i/java/
tool.html.

If you can’t read Japanese and are having trouble with the
page, don’t worry. Take it through a machine translation site,
such as AltaVista’s Babel Fish at http://babelfish.alta-
vista.com). The toolkit will run in English (if you aren’t run-
ning a Japanese OS) and provides an emulator to run your i-
applis on. As a bonus, it also automates many of the compila-
tion, preverification, and packaging steps discussed later.

Another emulator, probably new to developers from the
MIDP world, is Zentek Technology’s i-JADE product (found at
www.zentek.com/i-JADE/index.html). It’s designed to emu-
late the look and feel of actual phones available in Japan right
now. These emulators are invaluable tools for developers, and
I suggest you download both.

Finally, you’ll need a J2SE SDK for use during develop-

H
om

e
J2

E
E

J2
SE

J2
M

E

84 SEPTEMBER 2001

the i-mode Java specifications have defined
many requirements that are currently left up

to the implementers of
MIDP devices to decide

“
”

FIGURE 1 Hello World on the J2ME Wireless Toolkit for DoJa

FIGURE 2 HelloWorld on i-JADE emulating the F503i phone

FIGURE 3 ld on i-JADE emulating the N503i phone HelloWorl

FIGURE 4 ld on a real N503i phone HelloWorl

Java COM

86 SEPTEMBER 2001

ment. You should have no problems using most IDEs with
DoJa, but if you want to integrate development into the IDE,
then Forte for Java, JBuilder, and VisualCafé all offer ways to
integrate the emulators.

Writing an I-Appli
Now that you know where to find resources and tools for i-

mode Java, we’re ready to write a simple application. For this
article it’s going to be the tried-and-true Hello World, found in
Listing 1.

The first thing to note is that all applications must have a
class that extends com.nttdocomo.ui.IApplication. This class
must implement IApplication’s start method, which is first
called when the user runs the application on the phone. This

is similar to an applet’s start method or a MIDlet’s startApp
method. In the start method I create a Panel (a class that rep-
resents a screen and lets you place objects on it), called hpan-
el, then make a Label, called hlabel, with the text “Hello
World!” and add it to the panel I created.

Next, I set hpanel’s softkey 2 text to show “quit” and regis-
ter the HelloWorldAppli class as the SoftKeyListener. All
phones have two buttons called softkeys located on the left
and right edges, below the handset’s screen. When you set the
text for a softkey, it will be displayed directly above the button.

Softkeys are commonly used as a way to quickly activate
functions or menu options. In this example pressing the right
button (softkey 2) will quit the application. One point to
remember is that all i-applis must quit by calling the
IApplication terminate method. Don’t call System.exit() or
Runtime.exit() as they will cause a SecurityException.

We catch that a softkey has been pressed by making our
class implement SoftKeyListener with the two methods
softKeyPressed and softKeyReleased and register the listener
to the panel to catch the events when the panel is showing.

Finally, we’re ready to show the message to the user. Thus
we call the static setCurrent method on the singleton class
Display (passing in hpanel). This is a rather long and involved
version of Hello World, but if we did a simpler version, using
System.out instead of creating Panels and Labels, the message
would never be shown on a real phone, because the phones
don’t show System.out or error messages.

Of course, I could decide not to bother to implement the
quit command, but in that case the user would then have to
press the force quit key (usually the power button). Pressing
this button drops the user out of the i-appli software listing
and back to the base screen the phones show when powered
on. If they pressed our softkey instead, it would quit the appli-
cation and return to the listing of downloaded i-applis on the
handset, which is much more user-friendly.

Figures 1–4 are screenshots of the application running on
the wireless toolkit, i-JADE, and on a real phone.

Compiling I-Appli
The steps needed to go from code to pixels shown on a real

phone are fairly similar to those needed for an MIDP applica-
tion, but a bit more involved for a J2SE application. In all
cases, once you’ve written your code you must compile it. A
trusty J2SE compiler will do the job just fine.

When compiling you must set the bootclasspath parame-
ter to the CLDC base library instead of the usual J2SE base,
then set the classpath to point to your source code and the
DoJa API. Make sure to turn off debugging info, because it’ll
add to the size of your application and be of no use while run-
ning on a real phone. In this example our compilation com-
mand might look like this:

c:\jdk1.3\bin\javac -g:none –bootclasspath

c:\j2me_cldc\bin\api\classes –classpath c:\ijadeP\i-

jade-p.jar;. -d compiled HelloWorldAppli.java

Run Preverify
Next you must preverify your compiled code. For those

who do this on a daily basis with MIDP, it’s exactly the same
(except for a few different parameters). For those who don’t
know, “preverify” is a tool used to offload some of the work the
KVM must do to ensure that the Java bytecodes it receives are
valid. It’s included in the CLDC SDK, and it can also be found
in the wireless toolkit for DoJa.

Following is an example of running the preverify com-
mand on the HelloWorldAppli class:

H
om

e
J2

E
E

J2
SE

J2
M

E

Java COM

88 SEPTEMBER 2001

c:\j2me_cldc\bin\preverify -classpath

c:\j2me_cldc\bin\api\classes;c:\ijadeP\expandedJar\ -d

preverified compiled

To explain, I run the preverify command, setting the class-
path to the CLDC’s classes and the DoJa classes, and take the
classes in the compiled directory, outputting the resulting
preverified classes to a folder called preverified. In this exam-
ple I’m using i-JADE for the DoJa API – the preverify tool can’t
read .jar files, so you must expand any .jars you’re using, set-
ting the classpath to point to the expanded folder (in this case
the folder used is expandedJar).

Packaging I-Appli
After running preverify, you can package the application to

deploy it. I-mode Java phones take a .jar file with the preveri-
fied classes and any other resources you wish to use, such as
GIFs and sound files. Make use of the J2SE’s .jar tool to bundle
your application into a .jar file. When making a .jar, the hand-
sets won’t use the Manifest file; therefore you can save space
by using the flag – M in your .jar command.

As in the following example:

c:\jdk1.3\bin\jar –cvfM HelloWorld.jar

HelloWorldAppli.class

Once you’ve made your application a .jar, look at the file. If
it’s less than 10,240 bytes, you’re in the clear and ready to take
the next step in deploying your application. If it’s greater than
10KB, trim your classes and/or resources so your .jar file is
10KB.

Creating an Application Descriptor File
Once we have the .jar file, we’re ready to create an

Application Descriptor File, otherwise known as a .jam file.
This file is used to tell the phone about your application
before you download and execute it. It contains vital informa-
tion, such as the application size and name, parameters to
pass to the application, and whether it uses the network. For

this article I’ll introduce you only to the details that are
mandatory for all applications: AppName, AppClass, AppSize,
PackageURL, and LastModified.
• AppName: Name of the application; used when showing

the list of the applications on the handset.
• AppClass: Class that extends IApplication. If this class is

part of a package, make sure to give the fully qualified class
name.

• AppSize: Size of the .jar file containing the i-appli in bytes.
• PackageURL: URL pointing to the .jar file to download. If

the .jam and .jar file are in the same directory, then just
give the name of the .jar file.

• LastModified: Time the application was last
updated. Used to check if upgrades are available.
This is also the trickiest key to work with. If the
next five steps aren’t followed, it can lead to

problems at download time.
1. The first three letters of the day of the week followed by a

comma
2. The two digit date
3. The first three letters of the month
4. The four digit year
5. Finally, the time up to the number of seconds, separated

by colons and using two digits for each number

It can be a pain, but with practice it becomes easy (even
Panasonic made a mistake implementing this spec, so beware
of the month of April if you want to have your app run on a
Panasonic phone). Listing 2 is an example .jam file for the
HelloWorld i-appli named HelloWorld.jam.

Note that the wireless toolkit and i-JADE Lite Plus can
automate the compilation, preverification, and packaging
process, and can generate the .jam file, greatly simplifying
development and saving you from the vagaries of the
LastModified key.

Developing a Web Page for Deployment
The final steps involve creating a special Web page. Upload

this page along with the .jar and .jam files for the application
onto a Web server. To create the page, follow NTT DoCoMo’s
modified cHTML format. This is HTML with fewer frills; a
good site for information about the tags is http://www.nttdo-
como.com/i/tag/lineup.html). The Web page must include
two specific tags: an Object tag and an Anchor tag. Listing 3
provides a sample Web page for the application, and Figure 5
shows what it looks like on a real phone.

To make the Web page, create an object tag that specifies
an ID to refer to the anchor tag and a data attribute that gives
the path to the .jam file. The object tag also has a type attri-
bute with the value “application/x-jam”.

For the anchor tag insert a special attribute ijam that ref-
erences the object tag’s ID value. Then give an HREF attribute
pointing to a page to display if the user attempts to download
the i-appli from a handset or browser that doesn’t support i-
applis.

H
om

e
J2

E
E

J2
SE

J2
M

E

For those who don’t know, “preverify” is a
tool used to offload some of the work the

KVM must do to ensure that the Java
bytecodes it receives are valid

“
”

FIGURE 5 hw.html on the N503i phone

Java COM

90 SEPTEMBER 2001

Once you’ve created the Web page, all that’s
left is to upload the page along with the .jar and
.jam files to a Web site. If you’re in Japan, open up
the page in your phone and click on the anchor
to download and run the application.

Summary
You’ve now seen what it takes to make a simple

application for NTT DoCoMo’s Java-enabled hand-
sets. It might seem like the various steps to develop
and release an i-appli are a chore, but practice
makes it easy, and the time-consuming task even-
tually returns to writing the code itself. Now it’s
time to come up with more of those great applica-
tions that keep everybody so occupied that they
miss their intended destination on the train!

Resources
1. Mailing list focusing on the mobile phones in

Japan: www.appelsiini.net/keitai-l/
2. NTT DoCoMo’s Web site about i-mode: www.

nttdocomo.com/i/index.html
3. NTT DoCoMo’s listing of the Java-enabled 503i

series phones: http://503i.nttdocomo.co.jp/
4. Web page I created to help beginners get started

developing i-applis: www.geocities.co.jp/
SiliconValley-Cupertino/1621/

5. Zentek Technology’s i-JADE emulator: www.
zentek.com/i-JADE/index.html

6. Sun Microsystems CLDC SDK: http://java.
sun.com/products/cldc/

AUTHOR BIO
Zev Blut is a software developer in the R&D department for Yamatake
Corporation in Fujisawa, Japan. He has worked with the i-mode Java API
since the phones were released to the public in January 2001. Blut holds
a computer science degree from the University of Texas at Austin.

import com.nttdocomo.ui.*;

public class HelloWorldAppli extends IApplication implements

SoftKeyListener {

public void start(){

Panel hpanel = new Panel();

Label hlabel = new Label("Hello World!");

hpanel.add(hlabel);

hpanel.setSoftLabel(Frame.SOFT_KEY_2,"Quit");

hpanel.setSoftKeyListener(this);

Display.setCurrent(hpanel);

}

public void softKeyPressed(int softKey){

}

public void softKeyReleased(int softKey){

if (softKey == Frame.SOFT_KEY_2){

this.terminate();

}

}

}

AppName = HelloWorld

AppClass = HelloWorldAppli

AppSize = 629

PackageURL = HelloWorld.jar

LastModified = Sat, 04 Aug 2001 23:00:10

<html>

<head><title>Hello World i-appli</title></head>

<body>

<object declare id="helloworld.dec" data="helloworldiappli.jam"

type="application/x-jam"></object>

Please press

 here

to download the i-appli.

</body>

</html>

Listing 3: hw.html: Example Web Page for the HelloWorld I-Appli

Listing 2: Application Descriptor File: HelloWorld.jam

Listing 1: Source Code for HelloWorldAppli.java

H
om

e
J2

E
E

J2
SE

J2
M

E

zev@h7.dion.ne.jp

Java COM

92 SEPTEMBER 2001

However, Java can present some
challenges for embedded-systems
developers. First, speed – Java applica-
tions are inherently slower than appli-
cations compiled into native machine
code and embedded processors are
generally less powerful than those
found on desktops. There’s no direct
memory access and no interrupt han-
dling, two features usually required for
developing low-level software to control
hardware, and Java can’t easily run in
real time, to name only a few of the
issues.

Despite its limitations, Java can be
used effectively for embedded systems.
In this article, I share Wind River’s expe-
rience in embedded real-time comput-
ing to help developers overcome some
of the common pitfalls inherent in the
Java development environment. Part 2
will help you determine if Java is right
for your embedded development proj-
ect.

Java for the Embedded World
Unlike desktop systems, embedded

systems use different user interface
technologies; have significantly smaller
memories and screen sizes; use a wide
variety of embedded processors; and
have tight constraints on power con-
sumption, user response time, and
physical space. The original Java
Developer’s Kit (JDK) technology was
designed for desktop environments with
powerful processors, large disks, and
large available memory spaces.
Consequently, the full JDK architecture
is not suitable for many applications in
the embedded world.

However, Sun has also introduced
versions of the first iteration of Java (JDK
1.1 or Java 1) for the embedded world,
namely EmbeddedJava and
PersonalJava. The newest iteration, SDK
1.2 and higher (1.3, 1.4) or Java 2, is
grouped into three editions, one of

which is the Java 2 Micro Edition (J2ME)
aimed at the consumer electronics and
embedded market. EmbeddedJava,
PersonalJava, and J2ME provide stan-
dard, platform-independent Java devel-
opment environments that reduce costs
and shrink development cycles for Java
applications and applets running on
embedded devices.

EmbeddedJava
EmbeddedJava is a scalable and con-

figurable environment suitable for low-
end embedded devices with dedicated
functionality and limited memory. It’s
ideal for closed system devices that
don’t require Web browsing capabilities
and don’t expose application program-
ming interfaces (APIs) to the outside
world. EmbeddedJava includes tools
that allow developers to configure and
compile runtime environments that
contain only those fields and methods
necessary for a particular application’s
needs.

An executable image of a complete
EmbeddedJava environment can be
generated and placed in the embedded
system’s ROM. A dedicated tool chain
creates optimized application executa-
bles known as ROMlets, which can be
programmed into the device’s ROM, and
patchlets, enhanced ROMlets that can
be upgraded in the field. Developers can
use EmbeddedJava for a variety of prod-
ucts, including process controllers,
instrumentation, office printers and
peripherals, and networking routers and
switches.

PersonalJava
PersonalJava is an upward-compati-

ble subset of Java dedicated to con-
sumer and embedded devices, and
specifically designed for building net-
work-connectable consumer devices for
home, office, and mobile use. It consists
of the JVM and a subset of the JDK 1.1

APIs, including core and optional APIs
and class libraries. PersonalJava
includes the specific tools and APIs
required by embedded applications in
resource-limited environments. Ex-
amples of devices suitable for the
PersonalJava application environment
include mobile handheld devices, set-
top boxes, game consoles, and smart-
phones.

J2ME
J2ME, designed for the development

of such devices as digital cellular
phones, pagers, personal digital assis-
tants, digital set-top boxes, and retail
payment terminals, defines vertical
platforms called profiles that sit on top
of two different configurations.

The connected device configuration
(CDC) uses a 32-bit standard JVM and
requires more than 2MB of memory.
This configuration relies on some kind
of connection to a network and on an
underlying RTOS and C runtime envi-
ronment. The connected limited device
configuration (CLDC) uses the 16- or 32-
bit KVM and requires 256–512KB of
memory. It doesn’t necessarily require a
“persistent” network connection.
Profiles within these configurations are
integrated into the J2ME framework
with each profile targeting a precise ver-
tical market.

As discussed, some mechanisms of
the JVM and Java as defined in the desk-
top-oriented platforms (JDK 1.1 or Java
2) are not suitable for embedded sys-
tems. PersonalJava, EmbeddedJava, and
J2ME define a framework for optimized
embedded Java implementations, but
these Java versions alone are not ideal
unless coupled with some background
and experience in the development of
real-time and embedded applications.
The key to success is in knowing how to
architect Java technology specifically for
an embedded device.

Making Java Work in Embedded Devices

WRITTEN BY
VINCENT PERRIER

This is the first in a two-part series on the benefits of using
the Java development and runtime environment for embedded
computing. Java, with its “write once, run anywhere” paradigm, is
ideal for embedded computing because of its portability, reliabili-
ty, security, and Internet capabilities.

E M B E D D E D C O M P U T I N G

Leverage business from a new perspective

H
om

e
J2

E
E

J2
SE

J2
M

E

Part 1 of 2

Java COM

94 SEPTEMBER 2001

Increasing Speed
Java is a semicompiled language and

therefore inherently much slower than
native machine-code execution. This
speed issue is exacerbated by the fact
that embedded processors are usually
less powerful than desktop ones. The
easiest and most expensive way to
enhance Java performance is to use a
faster processor. Fortunately, there are
other solutions.

Just-In-Time (JIT) compilers for
desktop JVMs accelerate the Java inter-
pretation cycle by translating Java byte
code into machine code on the fly. In
their original form, JIT compilers are not
suitable for use with embedded applica-
tions because they require a lot of
dynamic memory. The compilers are
also unable to reach the performance of
traditionally compiled C/C++ code
because they translate Java byte code
into native code at runtime as opposed
to buildtime. Developers can achieve a
tradeoff between performance and
memory footprint with dynamic adap-
tive compilers – JIT compilers cus-
tomized for embedded applications –
that perform statistical analysis of byte
code prior to its translation into native
machine code.

Flash (or “pass-through” JIT) compil-
ers aren’t embedded in the JVM like JIT

compilers, instead they run separately
on a network host as “compiling”
servers. Upon a class download
demand, the flash compiler compiles
the requested Java bytecode and passes
the resulting native code to the JVM.
Flash compilers are still runtime com-
pilers and as such, they’ll slow runtime
execution to some extent. Plus, they
deliver classes over a network during
application execution, which can also
slow execution speed.

Ahead-of-time compilation trans-
lates Java source code to C code (losing
the Java portability) or translates Java
byte code to native machine code
(retaining portability at the application
level). Unlike JIT or flash compilers,
ahead-of-time compilers work at com-
pile-time and can achieve optimiza-
tions similar to those achieved by tradi-
tional compilers. Developers can avoid
undesirable code expansion due to
byte code-to-machine-code translation
by compiling 20% of the most relevant
Java code into native machine code,
with the JVM interpreting the remain-
ing 80%.

Executing Code from ROM
Desktop JVMs usually can’t execute

Java code directly from ROM. Normally,
Java classes are first loaded into RAM,

verified, and then executed by the JVM.
This approach is impractical for many
embedded systems because it increases
the use of expensive RAM beyond the
cost constraints of the embedded sys-
tem.

A ROMizer, such as Java
CodeCompact for PersonalJava and
EmbeddedJava, creates ROM-based
executable images of Java classes. To
execute Java code out of ROM instead of
RAM, a ROMizer utility processes Java
class files into a runtime format that can
be run directly out of ROM or flash
memory by the JVM. The ROMizing
process frees the JVM from the class-file
loading and byte code–verification
phases, and improves the performance
and start-up time of Java applications.

Direct Access to Memory/Files
Java includes a large set of classes

that are not scalable by default. Desktop
JVMs usually require several megabytes
of disk space and RAM to execute.
Embedded systems usually don’t have
large disk drives or big memory spaces,
although some of this memory usage
may be converted into ROM/flash mem-
ory for diskless embedded systems.
Therefore, it’s critically important that
developers tailor the operating system
and runtime components for embedded

E M B E D D E D C O M P U T I N G
H

om
e

J2
E

E
J2

SE
J2

M
E

systems to each application to avoid
unnecessary memory usage.

However, it may not be easy to ana-
lyze and remove all unused classes and
methods from Java to minimize the
embedded application’s final memory
footprint. Desktop JVMs usually down-
load class files from a local hard drive or
a file system on the network, and these
resources aren’t always available to
embedded systems.

The best scalability that can be
achieved starts with the underlying real-
time operating system (RTOS) scalabili-
ty and can be tracked at three different
levels on the Java side. First, the JVM
may be scalable depending on the ser-
vices the application requires. Second,
the Java classes may also be sorted and
only included in the runtime system if
they’re used by the application. The ver-
bose option of the Java launcher can be
helpful in the analysis of the used class-
es. Finally, a dedicated utility tool, such
as EmbeddedJava’s Java Filter, can be
used to skim Java classes and remove
unused methods and fields.

Developers may want to avoid load-
ing Java class files from a local or net-
worked file system, or use them only as
an option. They can either be stored in a
memory-based virtual file system (RAM,
ROM, or flash) or can be converted with

a “file-izer” utility tool into a C data
structure that stores the class file byte-
code content that’s linked to the RTOS
image.

Running Java in Real Time
Java’s biggest problem with real-time

execution is that Java garbage-collection
algorithms are usually nondeterminis-
tic. Once garbage collection starts, it
must run to completion and can’t be
preempted by a more urgent Java
thread. The time required for the
garbage collector to run is not pre-
dictable. This characteristic creates
unbounded latency in event response, a
condition that can’t be allowed in real-
time systems. However, even a deter-
ministic garbage collector may not guar-
antee a real-time execution of Java pro-
grams.

There are currently no real-time Java
implementations compatible with stan-
dard Java platform specifications, even
though a consortium of companies,
including Wind River, have been work-
ing with Sun to define standard real-
time extensions to Java under the Java
Community Process (in the JSR-00001,
see www.rtj.org). The best existing solu-
tion to Java’s real-time shortcomings
consists of a hybrid solution. Developers
can write the real-time part of an appli-

cation in C/C++ for the targeted RTOS,
and the rest in Java using JNI to connect
the two worlds.

Developers must pay careful atten-
tion to the implementation of the JVM
on top of the RTOS, making sure the
overall system operates in real time even
when Java is running. In addition, when
evaluating JVM solutions, developers
must consider memory management,
garbage collection and object finaliza-
tion, multithreading, interthread syn-
chronization, networking, and graphics.

Conclusion
Java is suited for embedded applica-

tions because it can help developers
leverage business from a new perspec-
tive, especially within the Internet-
access device market where connectivi-
ty, interactivity, reliability, security, and
dynamic extensibility are vital require-
ments. Embedded devices usually have
severe memory and power consumption
constraints, lower processor power, real-
time behavior, and other requirements
that Java doesn’t usually handle well.
Numerous companies offer leadership
products and solutions that can help
developers make Java work in embed-
ded solutions.

E M B E D D E D C O M P U T I N G
H

om
e

J2
E

E
J2

SE
J2

M
E

AUTHOR BIO
Vincent Perrier is

Wind River’s product
manager for Java

platforms. He has a
computer science

and engineering
degree from the

University of Nantes
in France.

Java COM

96 SEPTEMBER 2001

vincent.perrier@windriver.com

What
are the

?options?
W

ritten b
y G

lenn C
o
ates

W
en

n
o

s
nm

ents
E

nviro
n

E
nv

o
nm

en
s

Java COM

98 SEPTEMBER 2001

W hile representing my com-
pany at JavaOne this year, it was apparent that
many Java engineers are becoming more inter-
ested in the issues surrounding JVM selection
and integration. Many questions were asked
concerning the trade-offs involved in the dif-
ferent ways of implementing the JVM. This
article is aimed at helping device manufactur-
ers, OEMs, and J2ME application engineers
understand the issues – and at helping to initi-
ate further questions when talking to JVM ven-
dors.

What Are the ‘Risks’Associated with Java?
In my previous article “Java Thick Clients with

J2ME” (JDJ, Vol. 6, issue 6), I outlined a number of
risks commonly associated with Java. These include:
• Speed
• Memory requirements
• Power consumption
• Licensing and silicon cost

While discussing various Java risks and vir-
tual machine-implementation approaches, I’ll
refer to the following terms: code bloat, compile
stalls, and profiling stalls.

Code Bloat
This is a real problem when an application’s

Java byte code is compiled down to the native

H
om

e
J2

E
E

J2
SE

J2
M

E

Java COM

100 SEPTEMBER 2001

processor instructions, and is especially the case when using
RISC processors. Java byte code is abstract, and does a lot
more work in less space than long-winded native instructions.
Whenever a Java program is compiled on or off the device, the
native code needs to reside in memory so it can be run. This
expansion in memory is referred to as code bloat.

Compile Stalls
Compile stalls occur when, for example, a JIT compiler

compiles the application’s Java byte code into native machine
code on the device as the application is running. Obviously,
this requires processor power and can result in a noticeable
stall as the compiler runs. Depending on the device, processor,
clock speed, VM, and the application, this stall may often go
unnoticed by the end user if it’s “hidden” well enough.

Profiling Stalls
In order to tackle the problems associated with code bloat

and compile stalls, some VM vendors decide to compile only the
parts of the application that take the longest to execute.
However, no matter which technique is used, this profiling will
require some processing power, and again may not be noticeable
depending on the device, processor and VM, and the application.

It’s worth remembering that any of this extra processing can
be easily hidden from the user. Simply increasing the clock
speed from say 25MHz to 200MHz will do the trick, but the bat-
tery power of the device will last for only a day instead of a week!

What Are The Different Types of VMs?
The alternative approaches to VM implementation can be

plotted on a time line illustrating the evolution of VMs (see
Figure 1):

Interpreter
Many JVMs employ pure software interpretation. A good

example of this is the SUN KVM. Table 1 outlines its major
characteristics.

Optimized Interpreter
When performance becomes a problem, the interpreters

can be optimized in order to improve performance (see Table
2). Many devices that use a pure interpreter now use this
method as a way of squeezing out that extra performance, and
it does have a significant effect.

The optimized software must exist for your hardware, OS,
and JVM.

JIT
The Just-in-Time (JIT) approach to Java execution does as

its name suggests. It compiles the Java byte code into native
processor code as the application is run.

A common misconception with JIT is that the result is an
application that will run as quickly as an equivalent native C
application once the compilation is complete. This isn’t the
case as the application is still a Java application and still runs
within the Java domain.

Depending on the implementation, it may compile the
byte code at different stages of execution and may compile the
code using different models. We should also remember that
the rest of the Java subsystems still run, such as the garbage
collector, and threading kernel.

While JIT does bring big improvements in speed, it unfortu-
nately also carries two main risks: code bloat and compile stalls.

First, depending on the approach taken, at some time the
executing block of Java byte code will need to be compiled
into native processor instructions. This obviously requires
processing power. (Improvements will be possible via pre-JIT
to reduce these risks; however, Ahead-of-Time disadvantages
may be introduced.)

Second, once the code has been compiled, it needs to be
stored. On a mobile device this may mean Flash ROM or even
RAM. As Java byte code is abstract, it can represent more func-
tionality in less space than its native processor equivalent
instructions – especially in the case of a RISC processor. This
code bloat can be anything – up to a factor of 10. Another prob-
lem with JIT is the fact that code will be compiled into native
instructions, even if that block of code is seldom executed.

H
om

e
J2

E
E

J2
SE

J2
M

E

 Time

Optimized
Interpreter Ahead of time JIT

Sm art
JITInterpreter

Hardw are
Accelerators

Native Java
Processors

TABLE 1 Interpreter

Speed About as slow as it gets due to software interpreta-
tion overhead. This is even the case on a desktop
PC.

Memory No code bloat, as the Java byte codes are never
Requirements compiled into native processor instructions.

Power As the applications are interpreted, this will require
Consumption more processing power.

Licensing and Cost of licensing the software VM.
Silicon Cost

TABLE 2 Optimized Interpreter

Speed Will noticeably improve the performance of the pure
interpreter, which can help make the application
more responsive and usable.

Memory Similar to pure interpreter. May need extra static
Requirements memory to store extra code modules.

Power Similar to pure interpreter.
Consumption

Licensing and Extra licensing costs for the software bolt-on.
Silicon Cost

TABLE 3 JIT

Speed There will be initial compile stalls as the Java byte
code is compiled. However, once compiled there
will be a big and noticeable improvement in per-
formance. It may be possible to improve perform-
ance even more depending on how the JIT compiles
the code. For example, the byte code and native
code may be optimized

Memory More storage will be required to store the native
Requirements compiled static footprint. Also, the complexity and

size of the Java VM will increase as we are now
carrying a compiler as well as the Java subsys-
tems and our applications.

Power Extra processing power is required to do the com-
Consumption pilation.

Licensing and Cost of licensing the software VM.
Silicon Cost

FIGURE 1 Time line

H
om

e
J2

E
E

J2
SE

J2
M

E

Java COM

102 SEPTEMBER 2001

Again, depending on the device, processor, and imple-
mentation, this effect may not always be noticed by the end
user, depending how well it’s been hidden (see Table 3).

Ahead-of-Time Compilation
A good way of speeding up a JVM is to use ahead-of-time

compilation. This has the added benefit of reducing compile
stalls on the device, and can be performed for the bottlenecks
to control code bloat. However, the main disadvantage of this
is that separate binaries will have to be maintained for differ-
ent platforms – the platform-independent advantages are lost.
Alternatively, only the device’s “core” applications can be com-
piled ahead-of-time, while any dynamically downloaded pro-
grams could run interpreted.

As with JIT technology, a common misconception with
ahead-of-time is that the application will run as quickly as an
equivalent native C application. This isn’t the case as the appli-
cation is still a Java application and, once again, still runs within
the Java domain (see Table 4). The rest of the Java subsystems
still run, such as the garbage collector and threading kernel,

Smart JIT
To reduce the code bloat risk associated with regular JIT, Smart

JIT can be used (see Table 5), which compiles only the parts of the
program that prove to be the bottlenecks. Furthermore it may limit
the amount of complied code stored by throwing away old native
code in order to create space for newly compiled blocks. This
method can bring some limited code bloat, compile stalls, and pro-
filing stalls – depending on the approach taken. Whatever approach
is adopted, the extra effort is paid for in one way or another.

Hardware Accelerators
An accelerator is a hardware solution that typically “bolts on”

to the side of an existing heavyweight processor. The accelerator
can’t execute anything on its own. Rather it can be thought of as
a hardware Java adapter that uses a heavyweight processor to
speed up the Java execution. It effectively means that the main
processor can be used to execute Java byte codes by using the
processor’s native instructions to microcode the Java byte code.

The use of a hardware accelerator means there is no code
bloat as the native instructions are never stored. It also means
that there are no software compile stalls, as the Java byte code
to native instruction translation is done in the hardware.

The software-based JVM is still required. The accelerator ven-
dor typically modifies this so that it uses the hardware accelerator
in place of its main interpreter loop and byte code execution unit.

The following describes how an accelerator can be used on
a “two-sided” smartphone, where one side is used for the 3G
baseband critical tasks, and the other is used for the PDA-type
noncritical applications.

Single Chip Solution
In this configuration the baseband chip that manages the

3G protocol stack is also used to execute the Java subsystems
and Java applications (after being translated into native
instructions by the accelerator). This means the main chip is
used to run the following:
• Baseband tasks + original phone software
• Java subsystems
• Java applications

Dual Chip Solution
It’s important to remember that this may be contained on

a single piece of silicon.
In order to prevent any degrading in the performance of the

main baseband processor (which we shall refer to as the Master),
we have introduced another processor to take on the work of the
PDA (we shall refer to this as the Slave). This circumvents any per-
formance, stability, or security problems on the more “critical”
side of the phone. The Master and Slave typically communicate
via a system bus, such as a VCI compatible bus.

TABLE 4 Ahead-of-Time Compilation

Speed Big performance over interpretation for those parts
that are compiled. Any downloaded applications
that aren’t compiled may suffer much poorer per-
formance.

Memory Similar to pure interpreter.
Requirements

Power
Consumption

Licensing and Cost of licensing the software VM and compiler.
Silicon Cost

TABLE 5 Smart JIT

Speed Big performance improvement over interpretation.
Still may have some compile stalls. However, these
are limited as the JIT is now “smarter” and only
focuses on bottleneck code. Some initial profiling
needs to be done that obviously takes up process
ing power.

Memory Some extra RAM is required for the code bloat parts
Requirements of the application. Also the VM is now more com-

plex, so static space is probably required to account
for this.

Power Depending on the approach, processing power will
Consumption be required to do the compilation and the smart

profiling work.

Licensing and Cost of licensing the JIT.
Silicon Cost

TABLE 6 Hardware Accelerators

Speed Very fast. So far, this is the fastest way of executing
Java byte code. However, it may drastically reduce
the performance of the main processor, as this now
takes on the burden of running the JVM and appli-
cations.

Memory Very low, since native code is never stored.
Requirements

Power Power needed to do the byte code to native transla-
Consumption tion and run the JVM via a heavyweight processor.

Licensing and
Silicon Cost

• JVM needs to be licensed.

• If an additional processor is used so that the
main processor can be left alone, then this
must be licensed.

• If an additional heavyweight processor is used
so that the main processor can be left alone,
then an additional operating system must be
licensed.

• The accelerator must be licensed.

H
om

e
J2

E
E

J2
SE

J2
M

E

Java COM

104 SEPTEMBER 2001

While hardware acceleration is a much improved method
of running Java byte code, there are a number of potential
issues with this approach:
• Master processor work load increase
• Licensing cost of extra heavyweight native processor
• Silicon cost

Master Processor Work Load Increase
First, if the accelerator is bolted on to the side of your exist-

ing processor, then it will have to also carry the burden of a
Java Virtual Machine in addition to its normal duties.
Typically, the accelerator looks out only for Java byte codes.
When it “sees” one, it does a processor context switch into
“Java mode,” then pumps the native instructions into the reg-
ular processor for execution. The regular processor still needs
to do the actual “grunt” of the processing.

In addition to this, the native processor also needs to run
the Java subsystems, such as garbage collector, threading ker-
nel, dynamic class loader, and verifier. Again this requires pro-
cessing bandwidth on behalf of the main processor.

Licensing Cost
If the dual-chip solution is used so that the main processor

(Master) doesn’t have to take on the extra workload, then an addi-
tional (Slave) processor will be required – the one to which the
accelerator will be bolted (see Table 6). This will obviously incur
additional licensing costs, which, in the worst case, may be double.

Silicon Cost
If the dual chip solution is used, then the additional

processor will mean that the silicon cost will also increase.

Again, at worst, this may be double.

Native Java Processors
The next logical step for Java is to use native Java proces-

sors, where the native instructions are in fact Java byte codes.
This has the advantage of executing actual byte codes in a
similar fashion to how a native processor executes its instruc-
tions, which means that no translation or interpretation of
Java byte codes to another machine instruction set is required.
Typically, the processor directly executes a core set of byte
codes. This, in effect, means there is a core set of byte codes
that are true native machine instructions (see Table 7).

Other more complex instructions are implemented by using
the core set of byte code machine instructions as microcode,
and the few high-level byte codes are executed by firmware,
which uses both the microcoded byte codes and the core native
byte codes. Any improvements in the core native byte codes
have an immediate effect on the higher-level byte codes, which
presents a number of interesting optimization opportunities.

Looking back at our example of the two-sided smartphone,
we use a Master heavyweight processor to process the critical
heavy real-time 3G communication tasks, and a lightweight
Slave Java native processor for the PDA side of things.

It’s probably a fair statement to say that the 3G mobile
communications processing will only become more complex
and time critical as capabilities of the devices and networks
increase. Therefore, this processor can be left alone to do its
intended job of managing mobile communications.

The Slave Java processor is used to provide the processing
power for the PDA applications.

As with the other VM options, native Java processors can
also be field upgraded. One drawback of a native Java proces-
sor is that if any legacy native code needs to be run then this
can only be executed on the Master processor as the Java chip
can only understand Java code.

Which Way to Go?
A JVM may provide acceptable performance for a powerful

desktop system running at a high clock speed with megabytes
of RAM. However, when faced with the constraints of an
embedded environment, it may well falter when faced with,
for example, 1 megabyte of RAM, no virtual memory, no hard
drive, and a very low clock speed.

As we can see there are a number of alternatives when con-
sidering a JVM for an embedded environment. Still, the deci-
sion as to which way to go depends on many factors, includ-
ing the device, processor, clock speed, available RAM, sophis-
tication of user applications, and the required usability levels.

In this article, we’ve looked at the software techniques that
have become more widely used in embedded environments
with successful results, and at hardware alternatives that are
designed to provide the next generation in performance while
keeping memory and processing power to a minimum.

In terms of hardware-based VMs, accelerators are the next
step toward this “next generation.” Native Java processors are
a generation further on and are regarded as the ultimate goal.
This will open up a new set of exciting possibilities for mobile,
wireless, and embedded applications.

AUTHOR BIO
Glenn Coates has been a software engineer for nine years. For the last four years he has
worked with mobile devices and Java developing products, such as smartphones,
microbrowsers and digital set-top boxes. Glenn holds a degree in computer science and is
also a Sun-certified architect for Java technologies. He works for Vulcan Machines as a VM
architect developing a Java native processor called Moon. See www.vulcanmachines.com

TABLE 7 Native Java Processors

Speed About as fast as it can get. A core set of the Java
byte codes is now true native machine instructions.
The remaining higher-level byte codes then use
these as microcode.
The native Java processor vendors will
provide an optimized version of a Sun-compliant
J2ME VM built specifically for the native processor.
The hardware and firmware are developed and pro-
vided in synergy by one company. This means there
can be continuous improvement for performance
gains for both hardware and firmware parts.
The Java subsystems are developed using opti-
mized Java byte codes and run on the Java proces-
sor - not on the main processor.

Memory About as low as it gets. Byte codes are executed
Requirements directly on the Java chip, so they are never com-

piled and stored. Also the Java subsystems are
developed using optimized Java byte codes.
Therefore, considerably less memory is required to
store the subsystems code image.

Power About as low as it gets. Typically native Java
Consumption processors will require about the same number of

transistors as a hardware accelerator – without the
requirement for a native processor. This means that
the JVM doesn’t have the additional power over
head of a native processor.

Licensing and Licensing cost of the native Java processor. (Note
Silicon Cost there are no operating system or separate JVM

licensing costs or extra heavyweight processor
licensing costs.)

glenn@vulcanmachines.com

Java COM

106 SEPTEMBER 2001

I’ve worked as a designer and pro-
ducer of electronic games since 1979.
My first electronic game design was for a
game watch (Game Time by GCE, circa
1981–82). I’ve designed handheld game
LCDs, board games, dice games, and
games for videogame consoles, comput-
ers, and the Internet. I’m not a program-
mer. The ideas in this article are based
on general principles of game design –
not on details of the technology.

When designing games for a new
gaming platform, the first fact you must
face is the constraints of the system.
These platforms aren’t generally intend-
ed to support games. These devices can’t
do what a PC or set-top console can. But
that’s okay.

In fact, it’s more than okay!
With the capabilities of PCs and con-

soles increasing by leaps and bounds,
the game designer has been pressured
to make increasingly complex games.
But on a constrained system, expecta-
tions are lower, so the pressure is off the
designer to deliver complexity. You can
look at these constraints as limitations

that force you into simpler game play. Or
you can see these constraints as a
license to make simpler games. And in
my opinion, the simplest games are usu-
ally the best.

The Specifics
Here are the main areas you have to

consider when designing a game for a
constrained platform:
• Target audience
• Graphics
• Sound
• User interface
• Memory storage
• RAM capability
• Other special limitations or capabili-

ties of the system
• Target audience
• Who’s writing the checks

Let’s consider each area in detail.

First, picture your audience naked.
Okay, enough of that. Now picture them
with clothes on, playing your game.
Where are they? Why are they playing
your game? Who are they? How old?
What gender? What income bracket?
What nationality and language? Be real-
istic, not idealistic, in this considera-
tion.

Constrained gaming devices are typ-
ically portable. Your end user might be
standing in line at Starbucks. Or maybe
sitting at a bus stop (hmm, no – maybe a
taxi stand or airport). Think of more
examples where your user is while play-
ing your game. “Where” and “why” go
hand in hand.

The user of one of these new devices
is probably an adult. An adult, most like-
ly male, with money to spend on elec-

tronic gadgets. An “early adopter.”
These are mostly folks who spend a lot
of their time multitasking. Not a
moment is wasted: every idle moment
affords the busy multitasker an oppor-
tunity to check text messages or stock
prices... or to play a game. So how about
this for a wacky idea: a game that
requires the player to use those multi-
tasking skills. A game that can be played
in one-minute increments, in-between
other tasks.

If your research shows that teen girls
are increasingly using game-capable
pagers, it might make sense to design a
girl game for those pagers. But the teen
girl demographic has historically been
dismal for games. You might surprise
everyone and break the historical trend
(and garner headlines and big bucks),
but is that really the hill you want to die
on? Of course, if some company comes
to you and offers to pay you to
design/develop it, that’s another matter.

Anyway, once having thought
through who your target audience is,
you probably have a few initial game
ideas you want to explore. The next step
is to consider the technical aspects, after
which you may have to rethink your
ideas, culling and/or refining them.

When working with a constrained
platform, get all the information you can
about the graphics capability of the sys-
tem. There are some PDAs that support
hundreds of colors, but right now the
widest audience will be found for wire-
less phones, PDAs, and some types of
multipurpose pagers, usually with
black-and-white displays.

Consider the size and resolution of
the display. One of the worst-case sce-

Freedom Through Constraints

WRITTEN BY
TOM SLOPER

Today we have new gaming platforms.There are games for
wireless phones and PDAs. Some calculators, watches, messaging
pagers, and other handheld devices are also capable of supporting
games. The purpose of this article is to apply basic game design
principles to these devices.

G A M E D E S I G N

Designing games for constrained platforms

H
om

e
J2

E
E

J2
SE

J2
M

E

Editor’s Note: For all of you wrinkling up your
nose because this is an article on design, don’t
be too quick to wreck your rugged good-looks.
If you’re developing games for constrained
devices, then there’s a chance you’ll be
involved to a degree in game design. In fact, I
suspect a lot of you will be wearing both design
and development hats in your game develop-
ment efforts.

Tom Sloper was designing games back
when Man was still trying to figure out how to
roast those prime haunches of mastodon meat...
okay, that’s an exaggeration, but he was certain-
ly around close to the beginning of things, in
terms of the games industry. Where better to
learn than at the feet of the master?

–JB

TTaarrggeett
AAuuddiieennccee

GGrraapphhiiccss

Java COM

narios today is a Nokia phone with a black-
and-white display capability (or should I say
“limitation”) of 90x40 pixels. 3G (third-genera-
tion) phones will surely be better than that; 4G
will likely be even better. But all in due time.

Can your system display animated graphics,
or do you have to work with still images only? Is
it black-and-white, or can it support color, or
shades of gray?

Using the smallest readable font, how many
letters can you fit across the display? Does the
system come with a font, or do you have to
design one? Is your font variable-width or fixed-
width? I once worked on a Game Boy game with
a Japanese company. They had translated the
game’s story text into English, which was to be
displayed in a text window, two lines by 16 char-
acters wide. The text hadn’t been written with
this limitation taken into consideration; the user
would have to click endlessly to read the lengthy
text, sometimes just to read the final word of a
sentence in an otherwise empty window. There
was no question of enlarging the text window or
shrinking the font, so it fell to me to rewrite the
text to fit more compactly in the window.

Find out what your system is capable of
visually, and make adjustments to your game as
needed.

Maybe your user is a college student, play-
ing a game rather than listening to a boring lec-
ture. Or a guy in a cubicle, trying not to broad-
cast the fact that he’s taking an unsanctioned
game break. If so, the user will want to have the
ability to disable sound. But it’s important to
have sound in your game. Every action in the
game should be accompanied by a sound.

Find out what the system is capable of.
What kind of sounds can it play? Can it play
music? Can it play multiple sounds simultane-
ously? Often it’s the case, with a constrained
platform, that the answer to the last one is “no.”
It often occurs that two game sounds need to
be played at the same time. So it’s necessary for
the sounds to be prioritized so that the more
important sound is heard.

Let’s say your game has a sound to indicate
that the player character is walking, and a
sound to indicate the death of the player char-
acter. If the player character is walking when he
gets killed, it’s the death sound, not the walking
sound, that needs to be heard.

The highest-priority sound in your list is the
“game over” sound; you can figure out the rest
from there.

Consider the methods by which your user
can interact with your game. If you’ve seen
other games on your platform, consider using a
similar interface scheme. That way, players of

other games don’t have to learn a whole new
paradigm when picking up yours.

Phones have a 12-button dial and a couple
of other buttons, not all of which are available
to you for game play. There’s no joystick or
mouse. You’ll need to check which buttons can
be used for the game. What will happen if
somebody calls while the user is playing? How
can the player get out of the game to make or
take a call? Typing text is a pain on a phone; try
not to make the user do stuff that isn’t fun.

Palm-style PDAs have a stylus, and a couple
of other buttons. The stylus should be the main
input mechanism – probably the sole input
mechanism – for the game.

Other PDAs, and some pagers (like the
Motorola PageWriter) have QWERTY key-
boards. Keyboards are both good and bad when
it comes to gaming. The good thing is there’s
already a game interface “language” that’s been
established that you can use. The bad thing is
that too many game input buttons can make
things confusing for the player. Limit the use of
the keyboard to the most logical and intuitive
keys, and let the player configure them (and
make it easy to find the config menu).

Consider how the user can exit the game, go
do other tasks, and come back. Consider how
the user can quit a game that’s going badly and
start over. Your game must be intuitive; your
user won’t be carrying an instruction booklet
everywhere. There shouldn’t be a need for an
instruction booklet at all.

As a designer, I don’t necessarily need to
know exactly how many bytes of data the plat-
form can hold, but to know whether it’s “very
little” or “fairly roomy” helps me put things in
perspective. Can your game system support the
kinds of features you initially envision for your
game? For example, can it store the graphics for
multiple screens? Can it store animations and
sounds and game logic?

Not being a programmer, it took me a long
time to realize the difference between data stor-
age and RAM, and the impact it has on a game.
For the nontechnical designer, RAM size impacts
how much stuff can go on during a particular
level or stage of your game. Your game doesn’t
need to load into RAM any sounds not used in
the current level, for instance. Once again, get an
idea of how much RAM is available, and what
impact it will have on your initial basic idea.

All your dreams for your game idea will
probably be dashed once you work out what

UUsseerr
IInntteerrffaaccee

DDaattaa
SSttoorraaggee

RRAAMM

SSoouunndd

OOtthheerr
LLiimmiittaattiioonnss

Hello
World

TopCoder Programming
Competitions:
Profit from Performance.

Meet some of the
country’s best
programmers.

• Competing online each week for
cash prizes.

• Coding against the clock and each
other in real time.

• Qualifying for a chance to win
$100,000 in the TopCoder
Invitational.

Join us at www.topcoder.com or stop by
our exhibition booth (#100) at JDJ Edge.

you can’t do on the intended platform.
In this case, just close your eyes... imag-
ine the world from the other side of the
mirror... and figure out what you can do.

Look for inspiration in new games
like EA’s Majestic. Find new play para-
digms that take advantage of what the
hardware was designed for. Calculators
are good for math: think about math
games and puzzles. Wireless devices
that have a QWERTY keyboard would be
good for text-based games, involving
sending and receiving messages. Palm-
type PDAs let you write by hand and
touch any part of the display with a sty-
lus. This can be better even than a joy-
stick or mouse for solitaire gaming.

A wireless phone may not be able to
support streaming video (not now, any-
way – maybe 3G phones will be able to).
But think for a second. There’s a stream-
ing medium that phones are good at:
audio. That’s what phones were
designed for in the first place. How
about a game that involves listening, or
maybe even speech input? If you’re
designing a two-player game, maybe
there’s a way to use the players’ voice
mailboxes as part of the game play.
Phones let you hear, talk, and connect to
the Web – or to other gamers – from any-
place. And you might not stay in the
same place as you do it. Some systems
can even detect and track your proximi-
ty to other specific phones (e.g.,
other players) in real time.
While you may see pos-
sibilities for connect-

ing multiple gamers through wireless
phones, for now perhaps you should
limit your thinking to two players max.
The world isn’t yet ready for Massively
Multiplayer Wireless Phone Gaming.
Well, even if it is, the technology isn’t
quite there yet.

Every wireless phone is different, and
every phone network uses different
standards and protocols. Progress is
being made on wireless gaming all the
time. But “progress” doesn’t necessarily
mean that one universal standard is
coming anytime soon.

In July 2001, Ericsson,
Motorola, Nokia, and Siemens
announced they’d joined
forces to create a standard
for multiplayer wireless
gaming. The name of this
joint effort is “the
Mobile Games Inter-
operability Forum”
(MGI). This effort
won’t do much for
users of today’s wire-
less phones. Rather,
the standard will
apply to 3G net-
w o r k s

and phones. Don’t expect to see devel-
oper kits on this until 2002.

In addition, NTT DoCoMo is
involved in an effort with Sony and six
other wireless companies to develop a
wireless gaming service based on Sony’s
PlayStation 2 system
(Hint: It’s sure to
be better
than

H
om

e
J2

E
E

J2
SE

J2
M

E

108

Java COM

MMGGII,, 33GG,,
PPSS22,, ii--MMooddee

SEPTEMBER 2001

AUTHOR BIO
Tom Sloper produced
and designed games

at Activision for 12
years, and is now

consulting and
designing

independently.

Java COM

WAP; no hints yet as to how it’ll compare to
3G). NTT DoCoMo and Sega are also working
on games that will link i-mode phones to Sega
arcade games.

Whatever the system, get the specs, and you
can design a game for it.

This isn’t a mistake: I intentionally listed
“target audience” twice. If you’re wearing a
hardhat, please take it off for a moment while I
hammer this in: you must consider the target
audience first.

It’s unlikely that any grandmas will be play-
ing your PDA game. And it’s unlikely that many
kids will be playing your game, since we’re talk-
ing about hardware used by adults. The main
users of the devices under discussion are early
adopters. Early adopters might enjoy games
involving money, or cutting-edge technologies,
or time management.

And finally, you also need to think about...

The typical game designer (at least, for the
constrained platforms we’re discussing here) is
not necessarily going to be selling the game
directly to the end user. Wireless games are
billed and tracked by phone services, not by
game companies or game programmers.
What’s the business model in your case? You
need to know.

Where’s the money coming from for your
project? Perhaps a PDA manufacturer hires you
to design a game that takes advantage of the
features of a new PDA they want to tout.
Perhaps your assignment is to make an
advergame, a regular game that contains prod-
uct placements or billboards for a company
interested in selling its products to the audi-
ence playing your game.

Your client is the company that’s paying you
to produce this game. That company, not the
end user, is your direct customer. Remember
the old adage, “The customer is always right.” If
you want to make money designing and/or
developing games, you need to listen to the
client’s requirements and desires, and deliver
accordingly.

Conclusion
First you start with the known parameters:

the capabilities of the system, the preferences
of the target audience, and the thinking behind
the hand that writes the check.

Don’t try to make the platform do things it
wasn’t designed to do. Rather, try to find ways
to have fun with those special capabilities it
was designed to do.

Because the constraints of these devices
don’t allow you to make a Myst or a Quake, you
are freed to go back to the classic purity of
small, simple games.

To discuss this article go to www.slopera-
ma.com/advice/bulletinbd.htm.

TTaarrggeett
AAuuddiieennccee

WWhhoo’’ss WWrriittiinngg
tthhee CChheecckkss??

tomster@sloperama.com

Meet
TopCoder
A new kind of
programming
community.

• Showcase your talents in the great
American tradition of competition.

• Compete for cash, ratings and
bragging rights.

• 256 of the best will compete for a
chance to win part of the $250,000
purse at the 2001 TopCoder
Invitational.

Join TopCoder and get a piece of the
action.

TopCoder Programming
Competitions:
Profit from Performance.

G A M E D E S I G N

Java COM

110 SEPTEMBER 2001

This time around, we’re going to talk
about MIDP in the enterprise sense
(which has nothing to do with “Star
Trek”), and put together a basic example
that shows how a MIDlet fits into the big
picture.

As mentioned before, and it bears
repeating, a J2ME developer will
undoubtedly not be spending all of his or
her time developing on the client side.
J2ME applications, particularly MIDlets,
will involve a degree of interaction with
the server – and unless you’re working on
an exceptionally large system with a very
big team, it seems likely you’ll be the
developer with “fingers in many pies.”

What does that mean exactly? To put
it in the simplest terms possible: if
you’ve been neglecting your J2EE and
J2SE education in favor of Micro Edition,
now’s the time to dig out those dusty
textbooks and old copies of JDJ and do
some serious reading.

Client to Server Communications
In standard Java, there

are a number of ways a
client-side application can
communicate with anoth-
er machine. We have
everything from raw sock-
et connections where you
have to pretty much write
your own communica-
tions protocols yourself,
up to Remote Method
Invocation (RMI) from one
VM to another, on the
same or a different host.
On MIDP, however, we’re
reduced to the basics of
network communications
(for an introduction to net-
working in MIDP, see my

previous article, in JDJ (Vol. 6, issue 8) –
where HTTP will probably be the most
common methodology.

Typically we’ll see the following con-
figurations for basic enterprise MIDP
applications: a servlet talking directly to
the database (as shown in Figure 1)or a
servlet talking to an application server
that talks to the database (or in some
cases, with no database at all) as seen in
Figure 2.

Configurations aside, there should
be a layer between the MIDlet and the
enterprise data, however it’s held, to
preserve a level of abstraction. For
example, an HTML-based interface may
view hundreds of rows of data at any one
time, whereas a MIDlet may want to
view only 10 or 20. Assuming that the
enterprise layer has already been writ-
ten, there may be no real point in adding
yet another method to an EJB, just to
retrieve 10 rows at a time from the data-
base for a new MIDlet application –

rather than retrieving the entire data set.
Instead, write a servlet “interface” to the
EJB that loads the data into the client’s
session and then the MIDlet may call
the servlet any number of times to get
subsets of required data.

The Example So Far
As it stands, last month’s example

MIDlet – the PhoneBook application – is
fairly simple. You can list the contents of
the phone book and add or remove con-
tacts. If you remove the MIDlet suite
from the phone, however, the contents
of your phone book are lost.

To fix this problem, we need a reposi-
tory – somewhere to put the data. One
possibility here is to store the data in a
directory server and access it directly in a
servlet, which can expose simple meth-
ods for the MIDlet (or any other interface)
to access the data. Another option is a
database, with an EJB to handle data
access. Again a servlet becomes a middle-

man between MIDlet and
EJB/Database.

Rather than go
through the rigmarole of
setting up a database, the
EJB used in this month’s
example writes its state out
to a text file, and I’ve used
the Java 2 Enterprise
Edition SDK as the EJB con-
tainer. Please note, to use
the EJB, you’ll have to set
File-Write permissions in
the policy file for the
AppServer (server.policy,
located in the j2sdkee/
lib/security directory),
which is a quick and dirty
cludge I’ve used in this case,
but wouldn’t recommend in

WRITTEN BY
JASON BRIGGS

In Parts 1 and 2 of this series, we covered the basic features of
the various MIDP APIs. We looked at creating and packaging a
MIDlet, creating a user interface, and some basic graphics opera-
tions.We also discovered how to store data with the record man-
agement system and how to communicate over the network.

M I D L E T S

J2ME and the enterprise

Part 3 of 3

H
om

e
J2

E
E

J2
SE

J2
M

E A Beginner’s Guide to Writing
Applications for the MID Profile

FIGURE 1 Basic configuration with servlet talking directly to database

MIDlletle Servletl Database

via JDBC

FIGURE 2 Basic configuration with application server

Applicationplicatitiopp
Server

MIDlet Servletl Database

DBCvia JDD

111SEPTEMBER 2001

Java COM

Next Month
A Storm in a Coffee Cup

Embedded real-time Java components for hardware interfacing

by Mike Frerking and David Hardin

Making Java Work in Embedded Devices

Leverage business from a new perspective

Part 2

by Vincent Perrier and Steven Schwarz

Core J2EE Patterns

by John Crupi

J2EE Panel Discussion

by Alan Williamson

Journeyman

Making the Move to J2EE

by Charles Arehart

5 years
worth of...
Features & Articles

Product Reviews

Case Studies

Tips & Tricks

Interviews

Editorials

IMHOs

& more!

easily

searchable
HTML FORMAT

only
$ 7999

Check out over 500 articles covering topics such as...
Java Fundamentals, Advanced Java, Object Orientation, Java Applets, AWT,

Swing, Threads, JavaBeans, Java & Databases, Security, Client/Server, Java

Servlets, Server Side, Enterprise Java, Java Native Interface,

CORBA, Libraries, Embedded Java, XML, Wireless,

IDEs, using Java with others, and much more!

Questions? E-mail JDJCD@SYS-CON.COM

PRINT
pdf files

ORDER ONLINE AND GET 10% DISCOUNT GO TO WWW.JDJSTORE.COM TO ORDER

OFFER EXPIRES OCTOBER 31, 2001

Java COM

112 SEPTEMBER 2001

an actual system.
Note: Look for default permissions in

the policy file and change the line:

permission java.io.FilePermission

"*", "read";

to

permission java.io.FilePermission

"*", "read,write";

Listing 1 shows the “guts” of the
PhoneEJB (a stateful session bean).
There are five implemented methods:
ejbCreate, ejbRemove, add, remove
and getPhoneBook.
• ejbCreate: Called when the EJB is

created, and takes one parameter –
user. It loads names and phone
numbers from a data file of the same
name (if it exists), and stores the
information in a map.

• ejbRemove: Called at the end of the
EJB life cycle, at which point the
bean can be garbage collected. In
this case, the method writes the data
out into a data file using the user
details.
– Add: Takes a name and phone

number as string parameters and
saves these into the map.

– Remove: Takes a name as a string
parameter and removes the
matching record from the map.

– getPhoneBook: Returns the map
to the caller.

Nothing too complicated here, of
course. The next step is to provide an
easy way for the MIDlet to call this EJB.
Listing 2 shows part of the doGet
method in TestPhoneServlet.java.

Lines 1–6 instantiate an instance of
the Phone EJB.

Line 8 retrieves the “action” param-
eter from the servlet request.

If no action has been specified, we
assume that the caller wants to retrieve
the data, so lines 9–21 call the
getPhoneBook method on the EJB, to
return the map and then iterate
through the keys in the map, writing
the name and phone number to the
servlet output stream, with one record
per line.

If “add” has been specified as the
action, lines 22–32 get the name and
phone number parameters from the
servlet request, check to make sure
they’re not null, and then call the add
method on the EJB.

If “remove” has been specified as
the action, lines 33–42 get the name
parameter from the request, check that

it’s not null, and then call the remove
method on the EJB to remove the asso-
ciated record.

In both cases, the servlet writes out
an empty line if it succeeds, or an error
message beginning with “%ERROR” if
an unrecognized action is sent.

(Note: For my testing purposes I’ve
used Apache’s Tomcat servlet container.)

MIDlet Revisited
We now need to add functionality to

the PhoneBook MIDlet to access the
servlet. Listing 3 shows the first of the
new functionality – the initRecordStore
method. This method calls the servlet
using the URL:

http://localhost:8080/servlet/Test

PhoneServlet

You’ll recall from the servlet code, if
you pass no parameters in this manner,
then a list of records is returned by the
servlet. If no errors occurred (a return
of “%ERROR” from the servlet indicates
something went awry), then the cur-
rent contents of the record store are
deleted and replaced with this list.

To add each record to the store, the
initRecordStore method calls save (imple-
mented in last month’s installment). Note
that the save method has also been mod-
ified to take a Boolean parameter
(sendToServer), which indicates whether
the data should be saved to the server in
addition to the record store. As we’re ini-
tializing the record store, we don’t want to
save it to the server.

Listing 4 shows the changes to the
save and erase methods. The main dif-
ference in these is that the send-to-serv-
er functionality has been implemented
to ensure that any changes made at the
client level are mirrored on the server.

Missing from This Version
Apart from a few more supporting

methods and some minor changes, the
MIDlet is essentially the same. Of
course, the example is hardly what you
would call an “enterprise application.”
It does demonstrate that adding this
sort of capability to a MIDP application
is fairly straightforward. If we were to
extend this MIDlet into part of an
enterprise Personal Information
Manager suite (for example), then we
might want to add more validation and
include more data in the phone book
(mobile number, fax number, e-mail
address, etc).

One “buglet” in the current app is
that duplicates are allowable in the
client, but in the EJB they’ll be over-

M I D L E T S
H

om
e

J2
E

E
J2

SE
J2

M
E

SAVE44%Off
SAVE44%Off

the annual
newsstand rate

ANNUAL COVER PRICE

$71.88
ANNUAL NEWSSTAND RATE

$39.99

44%

YOU PAY

YOU SAVE
Off the
Newsstand Rate

Receive 12 issues of
Java Developer’s Journal

for only $39.99! That’s a savings of
$31.89 off the cover price.

Sign up online at
www.sys-con.com or call

1-800-513-7111
and subscribe today!

Here’s what you’ll find
in every issue of JDJ:

• Exclusive feature articles

• Interviews with the hottest
names in Java

• Latest Java product reviews

• Industry watch

Java COM

FREERegistration

Register for one...attend both

See them First at
XMLEdge2001

Fundamentally
Improving the

Speed, Cost &
Flexibility of

Business
Applications

Many New
XML Products

Will Hit the
Market
in Q3

of 2001

w w w . S Y S - C O N . c o m

’JOURNAL

™ ™ ™ ™ ™ ™ ™ ™ ™ ™

™

™

Santa Clara
Convention

Center
Santa Clara, CA

SYS-CON
MEDIA

Owned & produced by

™ ™ ™ ™ ™ ™ ™ ™

’

Media
Sponsors:

Silver
Sponsor:

Gold
Sponsor:

Platinum
Sponsor:

Corporate
Sponsors:

Association
Sponsors:

™ ™ ™ ™ ™ ™

™ ™ ™ ™ ™ ™ ™ ™

Java COM

114 SEPTEMBER 2001

written (since the data is stored in a
map and keyed on name, the phone
number is overwritten in the case of a
duplicate). Either we could store the
information differently in the EJB, or
disallow duplicates in the MIDlet.

Where to Go from Here?
Even if you’re a seasoned embed-

ded/mobile systems developer, J2ME (or
in this case, MIDP) introduces new vari-
ables into what may have been, up until
now, a fairly straightforward equation.
Java's strong networking support means
your enterprise application may be split

across multiple platforms (client and
multiple server tiers), in a way it might
not have been with traditional develop-
ment methods and languages.

Parts 1–3 introduced ways you
might go about using the various
MIDP packages. Of course, this does-
n’t help when you’re actually trying to
decide how your application should
be distributed across your architec-
ture. In the end, there’s no substitute
for good old hands-on experience –
trying out small projects for yourself.
Good luck, and let the MIDP produc-
tion line roll!

M I D L E T S
H

om
e

J2
E

E
J2

SE
J2

M
E

import java.io.*;
import java.g.*;
import javax.ejb.*;

public class PhoneEJB implements SessionBean {

String user;
Map phoneBook;

public void ejbCreate(String user) throws CreateException {

DataInputStream dis = null;

try {
if (user == null) {

throw new CreateException("Null user not allowed.");
}
else {

this.user = user;
}

phoneBook = new HashMap();

File f = new File(user + ".dat");
if (f.exists() && f.canRead()) {

dis = new DataInputStream(new FileInputStream(f));

while (dis.available() > 0) {
String name = dis.readUTF();
String phone = dis.readUTF();

phoneBook.put(name,phone);
}

}
}
catch (IOException e) {

throw new CreateException("unable to read data file : " +
e.getMessage());

}
finally {

if (dis != null) {
try { dis.close(); } catch (Exception e) { }
dis = null;

}
}

}

public void ejbRemove() {
DataOutputStream dos = null;
try {

dos = new DataOutputStream(new FileOutputStream(user + ".dat"));

Iterator iter = phoneBook.keySet().iterator();
String name, phone;
while (iter.hasNext()) {

name = (String)iter.next();
phone = (String)phoneBook.get(name);

dos.writeUTF(name);
dos.writeUTF(phone);

}

}
catch (IOException e) {

e.printStackTrace();
}
finally {

Listing 1 PhoneEJB.java

SAVE$5 OffSAVE$5Off
the annual
newsstand rate

Receive 12 issues of
XML-Journal for only $77.99!

That’s a savings of $10 off
the annual newsstand rate.

Sign up online at
www.sys-con.com or call

1-800-513-7111
and subscribe today!

ANNUAL COVER PRICE

$83.88
ANNUAL NEWSSTAND RATE

$77.99

$5.89

YOU PAY

YOU SAVE
Off the
Newsstand Rate

Co
m

in
g

in
 S

ep
te

m
b

er
: The Brave New World of Web Services; SOAP, WSDL

and UDDI – Part 1
by Ron Ben-Natan

The Business Impact of Web Services
by Coco Jaenicke

Web Services and ASP.NET
How to build an ASP.NET Web Service
by Chris Miller

Web Service Security Using Pluggable Providers
Mark A. Richman

XML.org Expands as Online Resource for XML in
Industry
by Leo Kraunelis

Business NOT Dialects Will Drive XML Adoption
XML advocates: What’s on CEOs’ minds?
by Ketan Patel

Java COM

• Real-World Web Services: Is It Really XML's Killer App?

• Demystifying ebXML: A Plain-English Introduction

• Authentication, Authorization and Auditing: Securing Web
Services

• Wireless: Enable Your WAP Projects for Web Services

• The Web Services Marketplace: An Overview of Tools, Engines
and Servers

• Building Wireless Applications with Web Services

• How to Develop and Market Your Web Services

• Integrating XML in a Web Services Environment

• Real-World UDDI

• WSDL: Definitions and Network Endpoints

• Implementing SOAP-Compliant Apps

• Deploying EJBs in a Web Services
Environment

• Swing-Compliant Web Services

• and much, much more!

*Offer expires November 30, 2001

Java COM

116 SEPTEMBER 2001

H
om

e
J2

E
E

J2
SE

J2
M

E
if (dos != null) {

try { dos.close(); } catch (Exception e) { }
dos = null;

}
}

}

public void add(String name, String phone) {
phoneBook.put(name, phone);

}

public void remove(String name) {
if (phoneBook.containsKey(name)) {

phoneBook.remove(name);
}

}

public Map getPhoneBook() {
return phoneBook;

}

public PhoneEJB() {}
public void ejbActivate() {}
public void ejbPassivate() {}
public void setSessionContext(SessionContext sc) {}

}

1. Context initial = new InitialContext();
2. Object objref = initial.lookup("MyPhoneEJB");
3.
4. PhoneHome home =
(PhoneHome)PortableRemoteObject.narrow(objref, PhoneHome.class);
5.
6. phoneejb = home.create("test");
7.
8. action = request.getParameter("action");
9. if (action == null || action.equals("")) {
10.
11. Map phoneBook = phoneejb.getPhoneBook();
12.
13. Iterator iter = phoneBook.keySet().iterator();
14. while (iter.hasNext()) {
15. String name = (String)iter.next();
16. String phone = (String)phoneBook.get(name);
17.
18. out.println(name + phone);
19. }
20.
21. }
22. else if (action.equals("add")) {
23. String name = request.getParameter("name");
24. String phone = request.getParameter("phone");
25. if (name == null || phone == null) {
26. throw new Exception("missing name and/or phone");
27. }
28.
29. phoneejb.add(name,phone);
30.
31. out.println("");
32. }
33. else if (action.equals("remove")) {
34. String name = request.getParameter("name");
35. if (name == null) {
36. throw new Exception("missing name");
37. }
38.
39. phoneejb.remove(name);
40.
41. out.println("");
42. }
43. else {
44. out.println("%ERROR : unrecognized command");
45. }

private final void initRecordStore() throws Exception {
store = RecordStore.openRecordStore("PhoneBook",true);

String s =
sendToServer("http://localhost:8080/servlet/TestPhoneServlet");

if (s != null && !s.equals("") && !s.startsWith("%ERROR")) {
recordEnum = store.enumerateRecords(null, pbcomp, false);
while (recordEnum.hasNextElement()) {

int id = recordEnum.nextRecordId();

store.deleteRecord(id);
}

String line = "";
for (int i = 0; i < s.length(); i++) {

if (s.charAt(i) == ’\n’) {
if (line.length() > 0) {

save(line.substring(0,MAX_NAME_LENGTH),line.sub-

string(MAX_NAME_LENGTH), false);
}

line = "";
}
else {

line += s.charAt(i);
}

}
if (line.length() > 0) {

save(line.substring(0,MAX_NAME_LENGTH),line.substring(MAX_NAME_LENG
TH), false);

}
}

recordEnum = store.enumerateRecords(null, pbcomp, false);
}

/**
* save a name and phone number to the record store
*/
private final void save(String name, String phone, boolean

sendToServer) throws Exception {
if (isEmpty(name)) {

throw new Exception("No name entered");
}
else if (isEmpty(phone)) {

throw new Exception("No phone entered");
}
else if (name.length() > MAX_NAME_LENGTH) {

throw new Exception("Name too long, max=" +
MAX_NAME_LENGTH);

}
else {

byte n[] = rpad(name,10,’ ’).getBytes();
byte p[] = rpad(phone,0,’ ’).getBytes();
byte rec[] = new byte[n.length + p.length];
System.arraycopy(n,0,rec,0,n.length);
System.arraycopy(p,0,rec,n.length,p.length);

if (sendToServer) {
String send =

"http://localhost:8080/servlet/TestPhoneServlet?action=add&name=" +
rpad(replace(name,’ ’,’+’),10,’+’) + "&phone=" + phone;

String rtn = sendToServer(send);

if (rtn != null && !rtn.trim().equals("")) {
throw new Exception("Server error : "+ rtn);

}
}

store.addRecord(rec,0,rec.length);

n = null;
p = null;
rec = null;

}
}

/**
* erase the current record
*/
private final void erase(boolean sendToServer) throws Exception

{
if (currentRecordID < 0) {

return;
}

try {
if (sendToServer) {

String send =
"http://localhost:8080/servlet/TestPhoneServlet?action=remove&name=
" + rpad(replace(list.getName(),’ ’,’+’),10,’+’);

String rtn = sendToServer(send);

if (rtn != null && !rtn.trim().equals("")) {
throw new Exception("Server error : "+ rtn);

}
}

store.deleteRecord(currentRecordID);
if (store.getNumRecords() < 1) {

currentRecordID = -1;
set(null);

}
}
catch (InvalidRecordIDException irie) {

throw new Exception("Invalid record");
}
catch (Exception e) {

throw new Exception("Unhandled.");
}

}

Listing 4 : PhoneBook.java (save and erase methods)

Listing 3 : PhoneBook.java (initRecordStore method)

Listing 2 : TestPhoneServlet.java (part of doGet method)

Java COM

The Depth and Breadth of Education to Advance Your Professional Skills
The JDJEdge 2001 Conference & Expo provides your best opportunity to understand how Java

technologies can solve enterprise challenges.

Four information-packed JDJEdge Tracks...

Track 1 J2ME – Micro Edition & Wireless
Cutting-edge sessions for software engineers and hardware
specialists working on wireless solutions.

Track 2 J2SE – Standard Edition
General Java programming for corporate programmers developing
full Java applications, including several introductory sessions.

Track 3 J2EE – Enterprise Edition
Advanced sessions for software architects, Web programmers,
corporate developers and consultants developing server-
based applications.

Track 4 Working with I-Technology
Technical and management sessions for business analysts, corporate
systems managers, architects, project managers and CIOs .

visit...www.sys-con.com/JDJEdge for complete program details

Who Should Attend
Developers, Programmers, Engineers

i-Technology Professionals

Senior Business Management

Senior IT/IS Management

Analysts, Consultants

The only event backed by
SYS-CON Media and
Java™ Developer’s Journal

JDJEDGE 2001 Features
Unmatched Keynoters and Faculty

Over 150 Intensive Sessions and Tutorials

The Largest Java Expo on the East Coast

BEA WebLogic™ FastTrack to Certification

IBM WebSphere™ FastTrack to Certification

Macromedia ColdFusion™ FastTrack to Certification

Sun Java™ FastTrack to Certification

Oracle 9i FastTrack to Certification

JAVA AND JAVA-BASED MARKS ARE TRADEMARKS OR REGISTERED TRADEMARKS OF SUN MICROSYSTEMS, INC. IN THE UNITED

STATES AND OTHER COUNTRIES. SYS-CON PUBLICATIONS AND SYS-CON EVENTS ARE INDEPENDENT OF SUN MICROSYSTEMS.

Owned & produced by

135 Chestnut Ridge Road,
Montvale, NJ 07645

201 802-3069
Fax: 201 782-9651

REGISTER TODAY!
GET UP
TO SPEED
ON WIRELESS
APPLICATIONS
USING J2ME
TECHNOLOGY

J2ME FOR
WIRELESS APPLICATIONS

J2ME
ME 1
Where J2ME Is Headed
Alan Williamson, Editor-in-Chief
JAVA DEVELOPER’S JOURNAL

ME 2
Deploying and Managing Java
over Wireless Connections
Gerald Wluka, Business Strategis
APPSTREAM

ME 3
J2ME in a Wireless World
Kumanan Yogaratnam, CTO
ESPIAL

ME 4
Java Technologies
for Mobile Devices
and Services
Martyn Mallick, Wireless Evangelist
iANYWHERE SOLUTIONS

ME 5
Implications on Wireless
Development
Dr. Jeff Capone, CTO
ALIGO

ME 6
J2ME MIDP Tutorial
Johnathan Knudsen, Course Writer
LEARNING PATTERNS

ME 7
How Do You Verify
The Reliability of Your
Middleware Components?
Jay Weiser, Manager
SEAGUE SOFTWARE

ME 8
Java on Mobile Phones
Jay Batson, CEO
PINGTEL

ME 9
Writing "Real Java,"
Not Just "C in Java"
Mike Elliott, Engineering
Applications Programmer
SUN MICROSYSTEMS, INC.

ME 10
TBA

ME 11
Avoiding Portable Pitfalls
Jason Gola, Consultant
CAP GEMINI ERNST & YUNG

ME 12
J2ME Development
Keith Bigelow, Dir. Product Mgmt.
LUTRIS

September
23-26, 2001

New York Hilton
New York, NY

Make your Web-based application faster and more scalabley pp
written by James McGoverny J

Java COM

118 SEPTEMBER 2001

here are many articles about basic performance tuning
a Java application. They all discuss simple techniques

such as using a StringBuffer versus using a String, and the
overhead of using the synchronized keyword.
This article doesn’t cover any of this. Instead we focus on

tips that can help make your Web-based application faster
and highly scalable. Some tips are detailed, others brief, but all
should be useful. I end with some recommendations that you
can present to your manager.

I was inspired to write this article when a co-worker
and I were reminiscing about our dot-com days – how we
designed for systems that could support thousands of
users and had tight code, and how we hit aggressive dead-
lines. Sometimes there’s a trade-off between designing for
reuse and designing for performance. Based on my back-
ground, performance wins every time. Your business cus-
tomers understand fast-performing systems even if they
don’t necessarily understand code reuse. Let’s get started
on our tips.

How to Use Exceptions
Exceptions degrade performance. A thrown exception first

requires the creation of a new object. The constructor in the
throwable interface calls a native method named
fillInStackTrace(). This method is responsible for walking the
stack frame to collect trace information. Then whenever an
exception is thrown, it requires the VM to fix the call stack
since a new object was created in the middle.

Exceptions should be used for error conditions only, not
control flow. I had the opportunity to see code in a site that
specializes in marketplaces for wireless content (name inten-
tionally withheld) where the developer could have used a
simple comparison to see if an object was null. Instead he or
she skipped this check and actually threw Null-
PointerException.

Don’t Initialize Variables Twice
Java by default initializes variables to a known value upon

calling the particular class’s constructor. All objects are set to
null, integers (byte, short, int, long) are set to 0, float and dou-
ble are set to 0.0, and Booleans are set to false. This is espe-
cially important if the class has been extended from another
class, as all chain constructors are automatically called when
creating an object with the new keyword.

Use Alternatives to the New Keyword
As previously mentioned, by creating an instance of a class

using the new keyword, all constructors in the chain are
called. If you need to create a new instance of a class, you can
use the clone() method of an object that implements the
cloneable interface. The clone method doesn’t invoke any
class constructors.

If you’ve used design patterns as part of your architecture
and use the factory pattern to create objects, the change will
be simple. Listed below is the typical implementation of the
factory pattern.

public static Account getNewAccount() {

return new Account();

}

The refactored code using the clone method may look
something like this:

private static Account BaseAccount = new Account();

public static Account getNewAccount() {

return (Account) BaseAccount.clone();

}

The above thought process is also useful for the imple-
mentation of arrays. If you’re not using design patterns within

J A V A B A S I C S
J2

SE
H

om
e

J2
E

E
J2

M
E

T

Java COM

Java COM

120 SEPTEMBER 2001

J A V A B A S I C S
J2

SE
H

om
e

J2
E

E
J2

M
E your application, I recommend that you stop reading this arti-

cle and run (don’t walk) to the bookstore and pick up a copy of
Design Patterns by the Gang of Four.

Make Classes Final Whenever Possible
Classes that are tagged as final can’t be extended. There are

many examples of this technique in the core Java APIs, such as
java.lang.String. Tagging the String class as final prevents
developers from creating their own implementation of the
length method.

Furthermore, if a class is final, all the methods of the class
are also final. The Java compiler may take the opportunity to
inline all final methods (this depends upon the compilers
implementation). In my testing I’ve seen performance
increase by an average of 50%.

Use Local Variables Whenever Possible
Arguments that are part of the method call and temporary

variables that are declared a part of this call are stored on the
stack, which is fast. Variables such as static, instance, and new
objects are created on the heap, which is slower. Local vari-
ables are further optimized depending upon which compil-
er/VM you’re using.

Use Nonblocking I/O
Current versions of the JDK don’t provide nonblocking I/O

APIs. Many applications attempt to avoid blocking by creating
a large number of threads (hopefully used in a pool). As men-
tioned previously, there’s significant overhead in the creation
of threads within Java. Typically you may see the thread
implementation in applications that need to support concur-
rent I/O streams such as Web servers, and quote and auction
components.

JDK 1.4 introduces a nonblocking I/O library (java.nio). If
you must remain on an earlier version of the JDK, there are
third-party packages that have added support for nonblock-
ing I/O: www.cs.berkeley.edu/~mdw/proj/java-nbio/down-
load.html.

Stop Being Clever
Many developers code with

reuse and flexibility in mind and
sometimes introduce additional

overhead into their programs.
At one time or another they’ve

written code similar to:

public void

doSomething(File file) {

FileInputStream

fileIn = new FileInputStream(file);

// do something

It’s good to be flexible, but in this scenario they’ve created
more overhead. The idea behind doSomething is to manipu-
late an InputStream, not a file, so it should be refactored as fol-
lows:

public void doSomething(InputStream inputStream){

// do something

Multiplication and Division
Too many of my peers count on Moore’s Law, which states

that CPU power will double every year. The “McGovern Law”
states that the amount of bad code being written by develop-
ers triples every year, ruling out any benefit to Moore’s Law.
Consider the following code:

for (val = 0; val < 100000; val +=5) {

shiftX = val * 8;

myRaise = val * 2;

}

If we were to utilize bit shifting, performance would
increase up to six times. Here’s the refactored code:

for (val = 0; val < 100000; val += 5) {

shiftX = val << 3;

myRaise = val << 1;

}

Instead of multiplying by 8, we used the equivalent to shift
to the left (<<) by 3. Each shift causes a multiplication by fac-
tors of 2. The variable myRaise demonstrates this capability.
Shifting bits to the right (>>) is the same as dividing by factors
of 2. Of course this makes execution speed faster, but may
make it difficult for your peers to understand at a later date;
therefore it should be commented.

Choosing a VM Based on Its Garbage Collection Implementation
Many people would be surprised that the Java specifica-

tion doesn’t require the implementation of a garbage collec-
tor. Imagine the days when we all have infinite memory com-
puters. Anyway, the garbage collector routines are responsible
for finding and throwing away (hence garbage) objects that
are no longer needed. The garbage collector must determine
what objects are no longer referenced by the program and
make the heap memory that’s consumed by the object free. It’s
also responsible for running any finalizers on objects being
freed.

Sometimes there’s a trade-off
between designing for reuse and

designing for performance
“ “

Java COM

WirelessEdge will provide the depth
and breadth of education and product
resources to allow companies to
shape and implement their wireless
strategy. Developers,
i-technology professionals and IT/IS
management will eagerly attend.

WHO SHOULD ATTEND
Mobile & Wireless Application Professionals
who are driving their enterprise’s
wireless initiatives:

• Program Developers
• Development Managers
• Project Managers
• Project Leaders
• Network Managers
• Senior IT and Business Executives

SHAPE
YOUR

WIRELESS
STRATEGY
SAVE THE
DATES!

C o n f e r e n c e T r a c k s

TTrraacckk OOnnee::
DDeevveellooppmmeenntt

WWAAPP

ii--MMooddee

BBlluueettooootthh // 880022..1111

SShhoorrtt MMeessssaaggiinngg

IInntteerraaccttiivvee

GGaammiinngg

GGPPSS // LLooccaattiioonn--

BBaasseedd

WWiirreelleessss JJaavvaa

XXMMLL && WWiirreelleessss

TTeecchhnnoollooggiieess

TTrraacckk TTwwoo::
CCoonnnneeccttiivviittyy

SSmmaarrtt CCaarrddss

WWiirreelleessss LLAANNss

iinnccll.. BBlluueettooootthh

UUMMTTSS//33GG

NNeettwwoorrkkss

SSaatteelllliittee

BBrrooaaddbbaanndd

TTrraacckk TThhrreeee::
WWiirreelleessss AAppppss

EEdduuccaattiioonn

HHeeaalltthh CCaarree

EEnntteerrttaaiinnmmeenntt

TTrraannssppoorrtt

FFiinnaanncciiaall SSeerrvviicceess

SSuuppppllyy CChhaaiinn

MMaannaaggeemmeenntt

TTrraacckk FFoouurr::
HHaarrddwwaarree

CCeellll PPhhoonneess//

WWoorrllddPPhhoonneess

PPDDAAss

HHeeaaddpphhoonneess//

KKeeyybbooaarrddss //

PPeerriipphheerraallss

TTrraannssmmiitttteerrss//

BBaassee SSttaattiioonnss

TTaabblleettss

TTrraacckk FFiivvee::
BBuussiinneessss FFuuttuurreess

WWiirreelleessss iinn
VVeerrttiiccaall IInndduussttrriieess

TThhee WWWWWWWW

UUnnwwiirreedd
MMaannaaggeemmeenntt

FFrroomm 33WW ttoo 44WW::
IIssssuueess aanndd TTrreennddss

""AAllwwaayyss--OOnn""
MMaannaaggeemmeenntt

EExxppllooiittiinngg tthhee
BBaannddwwiiddtthh EEddggee

UUnnpplluuggggeedd
VVaalluueewwaarree

WWiirreelleessss SSaalleess &&
MMaarrkkeettiinngg

Plan
to Exhibit
Provide the Resources To

Implement Wireless Strategy

The conference will motivate and

educate. The expo is where attendees will want

to turn ideas into reality. Be ready to offer solutions.

INTERNATIONAL
WIRELESS BUSINESS&TECHNOLOGY

CONFERENCE & EXPO

Shaping Wireless Strategy
for the Enterprise

Santa Clara, CA May 7-9, 2002

EXCLUSIVE
SPONSORSHIPS

AVAILABLE
Rise above the noise.

Establish your company
as a market leader.

Deliver your message
with the marketing sup-

port of

W W W. S Y S - C O N . C O M

FOR INFORMATION CALL

201 802-3069

C O N F E R E N C E & E X P O
C O N F E R E N C E & E X P O

Plan to Attend the
3-DAY Conference

S P E A K E R P R O P O S A L S I N V I T E D

SYS-CON
MEDIA

Java COM

122 SEPTEMBER 2001

J A V A B A S I C S
J2

SE
H

om
e

J2
E

E
J2

M
E While garbage collection helps ensure program integrity

by intentionally not allowing you to free memory you didn’t
allocate, this process also incurs overhead as the JVM deter-
mines the scheduling of CPU time and when the garbage col-
lector runs. Garbage collectors have two different approaches
to performing their job.

Garbage collectors that implement reference counting
keep a count for each object on the heap. When an object is
created and a reference to it is assigned to a variable, the count
is incremented. When the object goes out of scope the refer-
ence count is set to zero and the object can be garbage col-
lected. This approach allows for the reference counter to run
in small time increments that are relative to the execution of
the program. Reference counting doesn’t work well in applica-
tions in which the parent and child hold references to each
other. There’s also the overhead of incrementing and decre-
menting the reference count every time an object gets refer-
enced.

Garbage collectors that implement tracing trace out a list of
references starting with the root nodes. Objects found while
tracing are marked. After this process is complete, any
unmarked objects known to be unreachable can be garbage col-
lected. This may be implemented as a bitmap or by setting flags
in the object. This technique is referred to as “Mark and Sweep.”

Recommendations for Your Manager
Other approaches can be used to make your Web-based

application faster and more scalable. The easiest technology
to implement is usually a strategy that supports clustering.
With a cluster, a group of servers can work together to trans-
parently provide services. Most application servers allow you
to gain clustering support without having to change your
application – a big win. Of course you may need to consider
additional licensing charges from your application server ven-
dor before taking this approach.

When looking at clustering strategies there will be many
additional things to consider. One flaw that’s frequently made
in architecture is having stateful sessions. If a server/process
in the cluster crashes, the cluster will usually fail over the

application. For this functionality to happen,
the cluster has to constantly replicate

the state of the session bean to all
members in the cluster. Make

sure you also limit the size
and amount of objects that
are stored in the session, as
these will need to be repli-
cated.

Clusters also allow
you to scale portions of

your Web site in incre-

ments. If you need to scale static portions, you can add Web
servers. If you need to scale dynamically generated parts, you
can add application servers.

After you’ve put your system in a cluster, the next recom-
mended approach to making your application run faster is
choosing a better VM. Look at the Hotspot VM or other VMs
that perform optimization on the fly. Along with the VM, it’s a
good idea to look at a better compiler.

If you’ve employed several industry techniques plus the
ones mentioned here and still can’t gain the scalability and
high availability you seek, then I recommend a solid tuning
strategy. The first step in this strategy is to examine the over-
all architecture for potential bottlenecks. Usually this is easi-
ly recognized in your UML diagrams as single-threaded com-
ponents or components with many connecting lines
attached.

The final step is to conduct a detailed performance assess-
ment of all code. Make sure your management has set aside at
least 20% of the total project time for this undertaking; other-
wise insufficient time may not only compromise your overall
success, but cause you to introduce new defects into the sys-
tem.

Many organizations are also guilty of not having the prop-
er test beds in place due to cost considerations. Make sure
your QA environment mirrors your production environment,
and your QA tests take into account testing the application at
different loads, including a low load and a fully scaled load
based on maximum anticipated concurrent users. Performing
tests, sometimes to gauge stability of a system, may require
running different scenarios over the course of days, even
weeks.

Under no circumstances should you undertake tuning an
application without a profiler. We use Optimize it, but
Sitraka’s JProbe and Numega’s profiler are also good. These
tools will show you bottlenecks in your code, such as threads
that are blocked by other threads, unused objects that survive
garbage collection, and excessive object creation. Once
you’ve captured the output of these tools, make simple
changes and limit the scope of those changes to things that
will make your code faster. Don’t worry about reuse, style
issues, or anything other than performance. Usually the easi-
ly identifiable bottlenecks will be contained within loops and
algorithms.

AUTHOR BIO
James McGovern is an enterprise architect with Hartford Technology Services Company
L.L.C., an information technology consulting and services firm dedicated to helping businesses
gain competitive advantage through the use of technology. His focus is on the architecture of
single sign-on solutions.

The easiest technology to implement is
usually a strategy that

supports clustering
“ “

james.mcgovern@htsco.com

Java COM

advertise

authors

subscribe

editorial

source code

jdj edge

 new york, ny

 sept 23–26

java forums

mailing list

advertiseadvertiseadvertise subscribesubscribesubscribehomehomehome contactcontactcontact

The World's Leading Java Resource

search jdj

JDJ SPEcials

bestsellers

bestsellers

J2
SE

H
om

e
J2

E
E

J2
M

E

JDJ Online
Check in every day for up-to-the-minute news, events,

and developments in the Java industry. Can’t get to the news-
stand on time? Visit www.javadevelopersjournal.com and be
the first to know what’s happening in the industry.

JDJ Store CD Special
The complete library of JDJ, XML-J, and CFDJ articles are

available on CD at a special price, for a limited time.
Order now and have over 1,000 articles on hand for research

and review. There are features, how-tos, product reviews, case
studies, tips and tricks, interviews, IMHOs, and more!

Check out over 500 articles covering topics such as Java
Fundamentals, Advanced Java, Object Orientation, Java
Applets, AWT, Swing, Threads, JavaBeans, Java and Databases,
Security, Client/Server, Java Servlets, Server Side, Enterprise
Java, Java Native Interface, CORBA, Libraries, Embedded Java,
XML, Wireless, IDEs, and much more.

This package normally sells for $260, but it can be yours for
only $175.99 for a limited time. Order today and save!

Subscribe to Our Free Weekly Newsletters
Now you can have the latest industry news delivered to

you every week. SYS-CON newsletters are the easiest way to
keep ahead of the pack. Register for your free newsletter
today! There’s one for Java, XML, Web Services, Wireless, and
ColdFusion. Choose one or choose them all.

Search Java Jobs
Java Developer’s Journal is proud to offer an employment

portal for IT professionals. Get direct access to the best com-
panies in the nation. Learn about the “hidden job market”
and how you can find it. If you’re an IT professional curious
about the job market, this is the site to visit.

Simply type in the keyword, job title, and location, and get
instant results. You can search by salary, company, or industry.

Need more help? Our experts can assist you with retire-
ment planning, putting together a résumé, immigration
issues, and more.

JavaDevelopersJournal.com Developer Forums
Join our new Java mailing list community. You and other IT

professionals, industry gurus, and Java Developer’s Journal
writers can engage in Java discussions, ask technical ques-
tions, talk to vendors, find Java jobs, and more. Voice your
opinions and assessments on topical issues – or hear what
others have to say. Monitor the pulse of the Java industry!

JavaBuyersGuide.com
JavaBuyersGuide.com is your best source anywhere, any-

time on the Web for Java-related software and products in
more than 20 mission-critical categories, including applica-
tion servers, books, code, IDEs, modeling tools, and profilers.
Check the Buyer’s Guide for the latest and best Java products
available today.

What’s Online... September 2001

Java COM

124 SEPTEMBER 2001

Java COM

125SEPTEMBER 2001

Java COM

?

Missed an issue?
We’ve got ’em all for you on CD!

Order Online and Save 10% or More!

www.JDJSTORE.com

CFDJ The Complete Works
Reg $79.99

Online Only

$7199

XML-J The Complete Works
Reg $59.99

Online Only

$5399

JDJ The Complete Works
Reg $119.99

Online Only

$7199

The most complete
library of exclusive

CFDJ articles on one CD!

Check out over 250 articles
covering topics such as…

Custom Tags, ColdFusion and Java,
Finding a Web Host, Conference Reports,

Server Stability, Site Performance,
SYS-CON Radio, ColdFusion Tips and

Techniques, Using XML and XSLT
with ColdFusion, Fusebox, Building

E-Business Apps, Applicaton
Frameworks, Error Handling, and more!

The most complete
library of exclusive

XML-J articles on one CD!

Check out over 250 articles
covering topics such as…

XML in Transit, XML B2B, Java & XML,
The XML Files, XML & WML, Voice XML,

SYS-CON Radio, XML & XSLT, XML &
XSL, XML & XHTML, 2B or Not 2B, XML

Industry Insider, XML Script,
<e-BizML>, XML & Business, XML
Demystified, XML & E-Commerce,
XML Middleware, and much more!

The most complete
library of exclusive

JDJ articles on one CD!

Check out over 500 articles
covering topics such as...

Java Fundamentals, Advanced Java,
Object Orientation, Java Applets,
AWT, Swing, Threads, JavaBeans,

Java & Databases, Security,
Client/Server, Java Servlets, Server Side,
Enterprise Java, Java Native Interface,

CORBA, Libraries, Embedded Java, XML,
Wireless, IDEs, and much more!

COLLECT

ALL
REG. $259.97
ONLINE

ONLY$17599

3JDJ
XML-J
CFDJ

OFFER EXPIRES OCTOBER 31, 2001

ServletExec 4.0 Released
(Alpharetta, GA) – New Atlanta
Communications, LLC,
announced the availability of
ServletExec 4.0, the only com-
mercial product to feature Servlet
API 2.3 and JSP 1.2. It also
includes the ability to configure
JDBC 2.0
data
sources,
Web application security,
resource monitoring, general
performance enhancements, and
a straightforward installation and
configuration process.

The product is available for
immediate download at
www.servletexec.com.

Borland Announces New
Version of Studio for Java
(Long Beach, CA) – Borland
Software Corporation unveiled
the new Borland Enterprise

Studio for Java
(the Studio), an
application

development life-cycle solution
for building
enterprise
applications.
This new
version offers
tighter
integration
between
RationalRose, Borland JBuilder,
and XML integration.
www.borland.com

CocoBase Enterprise O/R
Optimized for JBuilder 5
(San Francisco, CA) – THOUGHT,
Inc.’s, CocoBase Enterprise O/R is

now optimized
for the Borland
JBuilder 5 IDE.

CocoBase enables companies to
integrate relational data with EJB
applications. Customers using
CocoBase with JBuilder can now
gain time and labor savings by
generating scala-
ble and high-
performance
CMP and BMP,
in addition to
JSP with its
dynamic map-
ping capability.
www.thoughtinc.com

Flashline Prepares Corporations
for Software Reuse
(Cleveland, OH) – Flashline is offer-
ing a range of consulting and edu-
cational services to teach organiza-
tions how to succeed with a reuse
initiative. The
services address
all stages of com-
ponent-based development (CBD)
and reuse adoption.

All services are offered on an
individual basis. The readiness
review and the reuse analysis sur-
vey are included with the purchase
of Flashline Component Manager,
Enterprise Edition (CMEE).
www.flashline.com

New Atlanta Acquires JTurbo
Business Unit
(Alpharetta, GA) – New Atlanta
Communications, LLC, has
acquired
the JTurbo
business
unit from Ashna Incorporated, a
privately held Newark,
California–based firm. The acqui-
sition expands the company’s
software offerings to include
Sun-certified Type 4 JDBC drivers
for Microsoft SQL Server 6.5, 7,
and 2000.
www.newatlanta.com

Sitraka Accelerates Performance
Tuning of E-Business Apps
(Toronto, ON) – Sitraka
announced the full integration
and support of Sitraka JProbe
with Oracle9i
Application
Server
(Oracle9iAS).
The integration of Sitraka JProbe
with Oracle9i provides Oracle

customers
with the
ability to
identify and

eliminate performance issues to
ensure the development of high-
quality applications that meet
their performance criteria.
www.sitraka.com

Segue Upgrades E-Business
Reliability Tools
(Lexington, MA) – Segue
Software, Inc., unveiled the
newest versions of two of its
e-business reliability products:

SilkPilot 2.2,
which allows
customers to test
the interaction
between
applications,
middleware, and
servers; and

SilkMeter/ASP, the Web-based
extension of the SilkMeter
licensing technology.

Segue also introduced its
“SilkCard” technology, a usage-
based debit system that gives
software consult-
ants flexibility in
deploying
Segue’s e-business reliability
solutions.
www.segue.com

Sybase Unveils Enterprise
Portal - Express Edition 2.0
(Emeryville, CA) – Sybase, Inc.,
launched Sybase Enterprise
Portal - Express Edition 2.0, which
enables enterprises to deploy a
personalized, common interface
to multiple applications and
information sources with single
sign-on security. It’s a new offer-
ing within Sybase’s Enterprise
Portal product family.

Key features include prebuilt
portlets for content feeds and
searches; prebuilt support for
search, categorization, and per-
sonalization; and a full-featured
security framework with LDAP
and single sign-on support.
www.sybase.com

SilverStream Introduces
jBroker Web 1.0
(Billerica, MA) – SilverStream
Software, Inc., released jBroker
Web 1.0, a portable Web services
engine
and
tool
designed to build, run, and
invoke Web services using Java.

jBroker Web provides a stan-
dards-com-
pliant, Web
services run-
time with a
small foot-

print and flexible architecture.
jBroker Web is free and

available for download at
http://extend.silverstream.com.

DWL, Sun, iPlanet Announce
Transactional CRM Solution

(New York, NY | Palo Alto, CA) – DWL Inc., Sun Microsystems,
Inc., and iPlanet E-Commerce Solutions, a Sun-Netscape

Alliance, announced an EJB architecture-
based transactional CRM solution.
Powered by iPlanet
Application Server
and Enterprise
Edition software and

supporting J2EE, the solution will help
financial services and insurance compa-
nies leverage and consolidate back-end legacy and adminis-
trative systems to create personalized portals that support key
CRM functionality.
www.dwl.com
http://sun.com
www.iplanet.com

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

126 SEPTEMBER 2001

Linux Articles

LinuxBusinessWeek.com is
seeking articles for its next
few issues. Topics of interest
include office applications,
security, Linux in the health
care industry, embedded Linux,
network-centric computing,
Linux training, certification,
or anything you feel would be
of interest to our readers. We
also seek case studies, product
reviews, book reviews, and how
tos/tutorials. E-mail your article
ideas to cheryl@sys-con.com.

127SEPTEMBER 2001

Java COM

INTRODUCTORY OFFER

SAVE $31
*

HURRY, DON’T DELAY!

OFFER EXPIRES: DECEMBER 31, 2001

SPECIAL

Helping
you enable
inter-company
collaboration
on a global scale

¥ Product Reviews
¥ Case Studies

¥ Tips, Tricks
and more!

SYS-CON Media, the world’s leading publisher of i-technology magazines
for developers, software architects, and e-commerce professionals, brings
you the most comprehensive coverage of WebLogic. *Only $149 for 1 year
(12 issues) regular price $180.

Premiering...
this fall
subscribe

Now!
FORFASTFORFASTFORFASTFORFASTFORFASTFORFASTFORFASTFORFASTFORFASTFORFASTDELIVERY

Go Online and Subscribe Today!
W e bL o g i cD e v e l o p e r sJ o u r n a l . c o m

•Offer expires Dec. 31, 2001

AUTHOR BIOS
Bill Baloglu is a principal

at ObjectFocus
(www. ObjectFocus.com),

a Java staffing firm in
Silicon Valley. Prior to that

he was a software
engineer for 16 years. Bill

has extensive 00
experience, and has held

software development
and senior technical

management positions at
several Silicon Valley firms.

Billy Palmieri is a
seasoned staffing industry
executive and a principal

of ObjectFocus. Before
that he was at

Renaissance Worldwide, a
multimillion-dollar global
IT consulting firm where

he held several senior
management positions in

the firm’s Silicon Valley
operations.

billb@objectfocus.com

billp@objectfocus.com

Java COM

128 SEPTEMBER 2001

The trouble that many engineers have in
breaking through to this level typically has to
do with a lack of key training and the right
experience, and, most important, a résumé
that doesn’t show a clear career path.

Some of this may have to do with a
lack of solid career counseling in school.
Perhaps aspiring engineers don’t seek
advice at an early enough stage, or the
schools don’t know enough about rapidly
changing technologies in the real world.

For starters, a typical résumé for a
junior or mid-level engineer shows that
the person may not have the right
degree. An EE, for instance, is less effec-
tive than an MS in computer science for
a Java server-side engineer.

Next, the person may take the first
attractive offer without realizing the
consequences.

They may work with languages like
Visual Basic, Visual C++, or other MS
languages.

After a year or two in their first posi-
tion, they often move to unrelated tech-
nologies by taking a job that seems attrac-
tive at the time. They may be working
with COM, DCOM, MFC, or Visual C++,
which doesn’t really give them the right
experience. Or perhaps they’re working
for a large company building internal
tools or software with Java but not work-
ing on large, scalable, enterprise projects.

With four or more years of what appears
to be good, high-tech engineering experi-
ence, this person now wants to be a senior
Java engineer. But by taking jobs as they
come along and picking up whatever tech-
nologies are used at each company, this
person now has a patchwork résumé that
has no cohesion or logical progression to it.

An analogy might be the house contrac-
tors who start out building decks, move on
to garages, then remodel kitchens. Now
they want to be senior lead contractors,
building the whole house or even a new
development. But what construction com-
pany will hire these people to do a job they
have no proven experience in?

Although we
are talking about
smart, talented people
here, it’s very hard to convince
hiring managers that these candi-
dates with the patchwork résumés are
the senior Java engineers they’re looking
for. Even if they get an interview, they
won’t pass the technical screening.

It’s always an uphill struggle.
During the recent high-tech gold

rush, companies were settling for less
than senior people for these positions.
The gold rush is over. Nobody’s settling.
It’s harder now.

So what’s a better approach? If you’re
just starting out, look at your career.
Decide what you want to do. Then map
out a plan and follow it. What’s your ulti-
mate goal? If it’s to be a CTO or a “big gun”
server-side Java engineer, follow this path:
1. Get a BS or MS in computer science at

the best school you can get into. Make
sure it’s a school that’s known for its
computer science department, like
Berkeley, Stanford, MIT, Purdue,
Michigan, or Carnegie Mellon. Man-
agers want to see that you’ve gotten
comprehensive computer science train-
ing at a well-known school.

2. Make sure that the program offers you
training in distributed computing and
object-oriented systems. The school
should also offer you a solid founda-
tion in software design and construc-
tion for large-scale systems along
with OO principles.

3. Remember that it takes several years to
reach the senior level. When hiring senior
engineers, managers look for eight to 10
years of server-side engineering experi-
ence, including C++, Java, and OO technol-
ogy. With only six or seven years of experi-
ence, the person needs to be extremely tal-
ented to land a senior position.

Another key
to this kind of senior
experience is having had
full life-cycle ownership of a sig-
nificant portion of a major project.
Many engineers have been individual
contributors or worked on a team for a
large project, but personal ownership and
responsibility through a full cycle is key.

But what if you’re in mid-career with
substantial commitments and it’s not
possible for you to go back and start
from scratch?

Take as many C++ and Java courses as
you can, try to get Java certified, and get
your hands on as much OO experience as
you can. You may have to take a step back
for a while. But unless you’re lucky and
get a position in a friend’s start-up com-
pany, it’s going to be almost impossible to
make the change without some sacrifice.

It’s also a good idea to rework your
résumé to highlight the Java and OO
direction you’re heading in and down-
play the experiences that aren’t relevant
to your current goals. Remember, work-
ing on many facets doesn’t necessarily
mean you’re a well-rounded engineer.

Would you try to drive across the coun-
try without a map? We wouldn’t. So why put
any less thought or planning into navigating
something as important as your career? And
when you need directions, ask.

WRITTEN BY
BILL BALOGLU &
BILLY PALMIERI

Since
we started writing this column,
we’ve gotten lots of inquiries
from engineers who want to
know the best way to reach
the level of senior
Java server-side
engineer.

Follow a Career Path . . .

C A R E E R O P P O R T U N I T I E S

. . . and ask
for directions

J2
SE

H
om

e
J2

E
E

J2
M

E

129SEPTEMBER 2001

Java COM

in the ONLY print magazine dedicated
to the Web services community.....

PREMIER LAUNCH AT:
JDJEdge 2001 / Web Services Edge East

September 23-26 / New York City
www.sys-con.com/webservicesedge/

NOVEMBER BONUS
DISTRIBUTION

Web Services Edge West /
XMLEdge event 2001

October 22-25 / Santa Clara
Convention Center
www.sys-con.com/
webservicesedge/

PREMIER ISSUE
DEADLINES

Insertion Order: 8/20/01
Materials: 8/24/01

NOVEMBER ISSUE
DEADLINES

Insertion Order: 9/17/01
Materials: 9/21/01

SYS-CON
MEDIA

CONTACT:

Megan Ring
201-802-3023

email: megan@sys-con.com

wireless java xml coldfusion powerbuilder websphere weblogic web services

subscribe online www.sys-con.com or call 800 513-7111 SYS-CON
MEDIA

www.wbt2.com

www.javadevelopersjournal.com

www.xml-journal.com

www.coldfusionjournal.com

www.powerbuilderjournal.com

www.webspheredevelopersjournal.com

www.wldj.com

www.wsj2.com

The words in the concrete had been
strangely “embedded” there with what
must have been streams of sand, care-
fully poured into the still-wet cement.
Although I don’t know how long the
writing had been visible when I first
saw it, I imagine that it hadn’t always
been so. It was almost as though the
words had been engineered to
“emerge” from the sidewalk, but only
after many years of use.

With a medium so exotic, you might
expect a commensurately exotic mes-
sage, but at first blush these words
seemed quite mundane. Rather than
being the directions to some colossal
cache of buried treasure, or a formula
for the True Elixir of Youth, the sidewalk
carried this simple message:

Now how could a message so appar-
ently nondescript deserve such a
strange and permanent canvas? Could
there be some gleaming redeeming
kernels of wisdom in this simple
rhyme? Or was the artisan just poking
fun at his then-distant future by inti-
mating a little piece of undisputed
truth?

For my part, I’ll try to find some
profundity. It’s usually there, actually –
and even when it isn’t you just need to
use the word eyebrows a few times and
no one will notice.

I’ll admit that I like my weather
“temperate” – not too hot and not too
cold. I’ll gladly take my stand as a fair-
weather friend of fair weather.

Minnesota has two periods of per-
fect weather each year – one in late
spring and one in early autumn – last-
ing several minutes each. Would it be
nice to have this weather indefinitely? I
don’t think so, but it’s purely academic
– there’s no danger whatsoever of that
happening.

However, if life was always easy,
we’d never get anything done, right?
There’s something to be said for the
oppressive darkness and bitter cold of
midwinter Minnesota. In fact, there are
several things to be said about our
yearly Arctic blast, and some of them
are printable.

One popular assertion around the
programming lab is that the quality of a
site’s code deliverables is directly pro-
portional to the inclemency of its
weather. When my family and I moved

here many years ago, I quickly
observed that we write great code here
in Rochester. I also observed that we
are subjected to several months of bit-
ter weather each year.

There being no counterexamples in
this experiential universe of exactly one
data point, I took the logical leap to a
committed, unshakable belief in this
principle: seasonally inclement weath-
er results in good computer code.

Each of us needs a logically indefen-
sible religious cause to embrace from
time to time; we merely carry on the
tradition handed down from our ances-
tors through the centuries. Naturally,
my aspirations to the divine could’ve
been aimed at a somewhat higher
plane of consciousness, but I’ve found
there is often comfort (and much com-
pany) in mediocrity.

People are basically pretty goofy
critters when it comes to belief sys-
tems, but far be it from me to say which
are the goofier and which the goofiest. I
mean, as soon as I say, “I’ve got the
Answer!” am I not automatically wrong
in at least half the world’s eyes, just
based on the language I spoke or the
cut of my trouser leg?

Perhaps the Answer I should offer
up is, simply, “There is no Answer.” Do
I win the new 6-ton SUV along with
that festooned dream home situated
squarely in the heart of manicured
suburban splendor? Hmmm…eye-
brows.

blair@blairwyman.com

C U B I S T T H R E A D S

AUTHOR BIO
Blair Wyman is a software
engineer working for IBM
in Rochester, Minnesota,
home of the IBM iSeries.

WRITTEN BY
BLAIR WYMAN

Java COM

130 AUGUST 2001

Jav
a D

ude
s

In the small South Dakota town that is home to my alma mater, there was a section of sidewalk bor-
dering the college campus that had clearly been laid down long before I was born.As I walked to class one
fine autumn day, I happened to look down and noticed that one of the squares of this sidewalk had been lov-
ingly crafted to serve as a frame for what appeared to be some meticulously executed handwriting.

And the Answer Is . . .
J2

SE
H

om
e

J2
E

E
J2

M
E

s a rule, a
man’s a fool.

When it’s hot,
he wants it
cool. When
it’s cool, he
wants it

hot. Always
wanting

what is not.

A

